Matlab 中 ksdensity表示意义

Matlab 中 ksdensity表示意义

f表示估计的概率密度函数值(对应于x),即f是x的函数值;
自动生成的x有几个,f对应的有几个;
学习代码如下:
%给一个随机样本
x=[randn(30,1);5+randn(30,1)]; %正态分布
%计算出各点的概率密度
[f,xi]=ksdensity(x);
%绘制图形
subplot(211)
histogram(x,10)
title(‘样本数据(Sample Data)’)
subplot(212)
plot(xi,f)
title(‘概率密度分布(PDF)’)

在这里插入图片描述

### MATLAB中`ksdensity`函数的使用说明 #### 函数概述 `ksdensity`用于估计一元或多维数据的概率密度函数(PDF),累积分布函数(CDF)或逆累积分布函数(ICDF)[^1]。 #### 基本语法 对于一维数据,最简单的调用形式如下所示: ```matlab [f,xi] = ksdensity(x); ``` 这里 `x` 是输入样本点组成的向量;返回值 `f` 表示在位置 `xi` 上计算得到的概率密度估计值。 #### 参数详解 - **x**: 输入数组,指定要拟合的数据集。可以是一维数值型向量。 - **pts**: 可选参数,表示希望评估PDF的位置,默认情况下会在内部自动生成一组均匀间隔的点来作为输出范围。 - **name,value**: 名字-值对组参数允许进一步定制核平滑器的行为,比如设置带宽(`'Bandwidth'`)、内核类型(`'Kernel'`)等属性。 #### 示例代码 下面给出一段完整的例子展示如何利用`ksdensity`创建并可视化概率密度曲线: ```matlab % 生成随机数模拟实验数据 rng default; data = [randn(30,1); 5+randn(30,1)]; % 计算KS密度估计 [f, xi] = ksdensity(data); % 绘制直方图与叠加的密度曲线 figure(); histogram(data,'Normalization','pdf'); hold on; plot(xi,f,'LineWidth',2); title('Kernel Smoothing Function Estimate of Data Density'); xlabel('Data Values'); ylabel('Density'); legend('Histogram ({@normalization=''count''})',... 'Smoothed PDF estimate using ''ksdensity''.',... 'Location','best') grid minor; ``` 此段脚本首先构建了一个混合正态分布的人工数据集,接着应用`ksdensity`获取其对应的连续近似表达式,并最终通过图表的形式直观呈现出来。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值