(KNN笔记一)KNN聚类的原理和实现

 目录

一.算法原理

    通用步骤

    K的选取

    如何选取K

二.Python的举例实现(癌症检测)

1.加载数据

2.乱序分组(测试集和训练集)

3.KNN算法的实现

4.测试并输出结果

三.代码

一.算法原理

.通用步骤 

1.计算距离(常用欧几里得距离或马氏距离)

2.升序排列

3.取前K个

4.加权平均

.K的选取

K太大:导致分类模糊

K太小:受个例影响,波动较大

由图可知,有两个类型的样本数据,一类是蓝色的正方形,另一类是红色的三角形。而那个绿色的圆形是我们待分类的数据。

如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。
如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。

因此,K值的选择对分类的结果有较大的影响。

.如何选取K

经验

均方根误差

 

二. Python的举例实现(癌症检测)

1.加载数据集

链接:https://pan.baidu.com/s/1w8cyvknAazrAYnAXdvtozw
提取码:zxmt

2.乱序分组(测试集和训练集)

random.shuffle(datas)
n = len(datas) // 3

test_set = datas[0:n]
train_set = datas[n:]

3.KNN算法的实现

def distance(d1,d2):
    res = 0

    for key in ("radius","texture","perimeter","area","smoothness","compactness","symmetry","fractal_dimension"):
        res += (float(d1[key]) - float(d2[key])) ** 2

    return res ** 0.5

K = 5
def KNN(data):
    #1.距离
    res = [
        {"result":train["diagnosis_result"],"distance":distance(data,train)}
        for train in train_set
    ]

    #2.升序排序
    res = sorted(res,key=lambda item:item["distance"])

    #3.取前K个
    res2 = res[0:K]

    #4.加权平均
    result = {'B':0,'M':0}

    #总距离
    sum = 0
    for r in res2:
        sum += r["distance"]

    #计算权重
    for r in res2:
        result[r["result"]] += 1-r["distance"]/sum

    #结果
    if result['B'] > result['M']:
        return 'B'
    else:
        return 'M'

4.测试并输出结果

correct = 0
for test in test_set:
    result = test["diagnosis_result"]
    result2 = KNN(test)

    if result == result2:
        correct += 1

print("准确率:{:.2f}%".format(100 * correct / len(test_set)))

三.代码

import csv

#读取数据
import random

with open("Prostate_Cancer.csv","r") as file:
    reader = csv.DictReader(file)
    datas = [row for row in reader]

#乱序分组,(测试集、训练集)
random.shuffle(datas)
n = len(datas) // 3

test_set = datas[0:n]
train_set = datas[n:]


#KNN算法的实现
#算法
def distance(d1,d2):
    res = 0

    for key in ("radius","texture","perimeter","area","smoothness","compactness","symmetry","fractal_dimension"):
        res += (float(d1[key]) - float(d2[key])) ** 2

    return res ** 0.5

K = 5
def KNN(data):
    #1.距离
    res = [
        {"result":train["diagnosis_result"],"distance":distance(data,train)}
        for train in train_set
    ]

    #2.升序排序
    res = sorted(res,key=lambda item:item["distance"])

    #3.取前K个
    res2 = res[0:K]

    #4.加权平均
    result = {'B':0,'M':0}

    #总距离
    sum = 0
    for r in res2:
        sum += r["distance"]

    #计算权重
    for r in res2:
        result[r["result"]] += 1-r["distance"]/sum

    #返回结果
    if result['B'] > result['M']:
        return 'B'
    else:
        return 'M'

#测试
correct = 0
for test in test_set:
    result = test["diagnosis_result"]
    result2 = KNN(test)

    if result == result2:
        correct += 1
#输出准确率
print("准确率:{:.2f}%".format(100 * correct / len(test_set)))

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
KNN(k最近邻)聚类是一种无监督学习算法,主要基于数据点之间的距离来进行聚类。其原理是根据每个数据点与其最近邻数据点的距离来决定该数据点所属的聚类。 首先,KNN聚类算法需要确定聚类的个数K,即将数据划分为K个不同的类别。然后,算法根据每个数据点与其最近邻数据点的距离进行划分。具体步骤如下: 1. 初始化聚类中心:随机选择K个数据点作为初始聚类中心。 2. 计算距离:对于每个数据点,计算其与聚类中心之间的距离,通常使用欧氏距离或曼哈顿距离。 3. 分配数据点:将每个数据点分配给与其距离最近的聚类中心所在的类别。即将数据点所属的聚类标签设为与其距离最近的聚类中心的标签。 4. 更新聚类中心:对于每个聚类,根据其所包含的数据点,重新计算其聚类中心的位置。通常是将该聚类所包含数据点的均值作为新的聚类中心。 5. 重复步骤3和4,直到聚类中心不再变化或达到预定的迭代次数。 KNN聚类的优点是简单易懂,易于实现,并且可以适应不同形状和大小的聚类。然而,它也存在一些缺点,如对初始聚类中心的选择较为敏感,聚类个数K需要事先确定,且算法的效率较低。 总而言之,KNN聚类是一种基于距离的算法,通过度量数据点之间的距离来划分聚类。它被广泛用于数据挖掘、模式识别等领域,对于简单的聚类问题具有一定的有效性和实用性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值