24暑假算法刷题 | Day44 | 动态规划 XI | 子序列问题 II | LeetCode 1143. 最长公共子序列,53. 最大子数组和,392. 判断子序列


1143. 最长公共子序列

点此跳转题目链接

题目描述

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1text2 仅由小写英文字符组成。

题解

动态规划的经典问题。

  • dp 数组的含义:

    • text1 的前 i 个字符组成的子串为 A A A
    • text2 的前 j 个字符组成的子串为 B B B

    dp[i][j] 表示 A A A B B B 的最长公共子序列长度

  • 状态转移方程:

    • 如果 text1[i - 1] == text2[j - 1] ,即当前的 A A A B B B 末尾字符相同,则自然可以将其加入之前的公共子序列中,相应的最长公共子序列长度即为 dp[i][j] = dp[i - 1][j - 1] + 1
    • 否则,无法形成更长的公共子序列,继承之前的最大长度: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

该算法更详细的讲解参见 代码随想录-1143

代码(C++)

int longestCommonSubsequence(string text1, string text2)
{
    vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
    for (int i = 1; i <= text1.size(); ++i) {
        for (int j = 1; j <= text2.size(); ++j) {
            if (text1[i - 1] == text2[j - 1]) 
                dp[i][j] = dp[i - 1][j - 1] + 1;
            else
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
        }
    }
    return dp[text1.size()][text2.size()];
}

完事可以接着做 1035. 不相交的线 - 力扣(LeetCode) ,稍微想一下就会发现那题就是个最长公共子序列问题,算法与本题一模一样 🤣 ​


53. 最大子数组和

点此跳转题目链接

题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分(连续的 非空 元素序列)。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

**进阶: ** 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

题解

动态规划

简单的一维动态规划问题。

  • dp 数组的含义: dp[i] 表示 nums[0...i] 里的最大子数组和

  • 状态转移方程:由于子数组是 连续的dp[i] 显然只由两种状态得来:

    • nums[i] 接在以 nums[i - 1] 为结尾的子数组后面,长度为 dp[i - 1] + 1
    • 自立门户,将 nums[i] 作为新子数组的开头,长度为1

    取最大值,即 dp[i] = max(dp[i - 1] + nums[i], nums[i])

最后,看以哪个元素为结尾的最大子数组和最大即可。

代码(C++)

int maxSubArray(vector<int> &nums)
{
    vector<int> dp(nums.size());
    dp[0] = nums[0];
    for (int i = 1; i < nums.size(); ++i) {
        dp[i] = max(dp[i - 1] + nums[i], nums[i]);
    }
    return *max_element(dp.begin(), dp.end());
}

分治法

上面算法的时间复杂度为 O ( n ) O(n) O(n) 。不过,题目的进阶要求提示我们可以用 分治法 ,实现一个更 “有趣” 的算法如下:

🔗 以下内容基本摘自 LeetCode官方题解

这个分治方法类似于「线段树求解最长公共上升子序列问题」的 pushUp 操作。 也许读者还没有接触过线段树,没有关系,方法二的内容假设你没有任何线段树的基础。当然,如果读者有兴趣的话,推荐阅读线段树区间合并法解决多次询问的**「区间最长连续上升序列问题」「区间最大子段和问题」**,还是非常有趣的。

我们定义一个操作 get(a, l, r) 表示查询 a a a 序列 [ l , r ] [l, r] [l,r] 区间内的最大子段和,那么最终我们要求的答案就是 get(nums, 0, nums.size() - 1)

如何分治实现这个操作呢?对于一个区间 [ l , r ] [l, r] [l,r] ,我们取 m = l + r 2 m = \frac{l+r}{2} m=2l+r ,对区间 [ l , m ] [l,m] [l,m] [ m + 1 , r ] [m+1,r] [m+1,r] 分治求解。当递归逐层深入直到区间长度缩小为 1 1 1 的时候,递归「开始回升」。

这个时候我们考虑如何通过 [ l , m ] [l,m] [l,m] 区间的信息和 [ m + 1 , r ] [m+1,r] [m+1,r] 区间的信息合并成区间 [ l , r ] [l,r] [l,r] 的信息。最关键的两个问题是:

  • 我们要维护区间的哪些信息呢?
  • 我们如何合并这些信息呢?

对于一个区间 [ l , r ] [l,r] [l,r] ,我们可以维护四个量:

  • l S u m lSum lSum 表示 [ l , r ] [l,r] [l,r] 内以 l l l 为左端点的最大子段和
  • r S u m rSum rSum 表示 [ l , r ] [l,r] [l,r] 内以 r r r 为右端点的最大子段和
  • m S u m mSum mSum 表示 [ l , r ] [l,r] [l,r] 内的最大子段和
  • i S u m iSum iSum 表示 [ l , r ] [l,r] [l,r] 的区间和

以下简称 [ l , m ] [l,m] [l,m] [ l , r ] [l,r] [l,r] 的「左子区间」, [ m + 1 , r ] [m+1,r] [m+1,r] [ l , r ] [l,r] [l,r] 的「右子区间」。我们考虑如何维护这些量呢(如何通过左右子区间的信息合并得到 [ l , r ] [l,r] [l,r] 的信息)?对于长度为 1 1 1 的区间 [ i , i ] [i,i] [i,i],四个量的值都和 nums[i] 相等。对于长度大于 1 1 1 的区间:

  • 首先最好维护的是 i S u m iSum iSum,区间 [ l , r ] [l,r] [l,r] i S u m iSum iSum 就等于「左子区间」的 i S u m iSum iSum 加上「右子区间」的 i S u m iSum iSum
  • 对于 [ l , r ] [l,r] [l,r] l S u m lSum lSum,存在两种可能,它要么等于「左子区间」的 l S u m lSum lSum,要么等于「左子区间」的 i S u m iSum iSum 加上「右子区间」的 l S u m lSum lSum,二者取大。
  • 对于 [ l , r ] [l,r] [l,r] r S u m rSum rSum ,同理,它要么等于「右子区间」的 r S u m rSum rSum ,要么等于「右子区间」的 i S u m iSum iSum 加上「左子区间」的 r S u m rSum rSum ,二者取大。
  • 当计算好上面的三个量之后,就很好计算 [ l , r ] [l,r] [l,r] m S u m mSum mSum 了。我们可以考虑 [ l , r ] [l,r] [l,r] m S u m mSum mSum 对应的区间是否跨越 m m m ——它可能不跨越 m m m ,也就是说 $ [l,r]$ 的 m S u m mSum mSum 可能是「左子区间」的 m S u m mSum mSum 和 「右子区间」的 m S u m mSum mSum 中的一个;它也可能跨越 m m m ,可能是「左子区间」的 r S u m rSum rSum 和 「右子区间」的 l S u m lSum lSum 求和。三者取大。

这样问题就得到了解决。

代码(C++)

class Solution // 分治法
{
private:
    struct Status {
        int lSum;
        int rSum;
        int mSum;
        int iSum;    
    };

    Status pushUp(Status l, Status r) {
        int iSum = l.iSum + r.iSum;
        int lSum = max(l.lSum, l.iSum + r.lSum);
        int rSum = max(r.rSum, l.rSum + r.iSum);
        int mSum = max(max(l.mSum, r.mSum), l.rSum + r.lSum);
        return Status{lSum, rSum, mSum, iSum};
    }

    Status get(const vector<int>& a, int l, int r) {
        if (l == r)
            return Status{a[l], a[l], a[l], a[l]};

        int m = l + (r - l) / 2;
        Status left = get(a, l, m);
        Status right = get(a, m + 1, r);
        
        return pushUp(left, right);
    }

public:
    int maxSubArray(vector<int> &nums)
    {
        return get(nums, 0, nums.size() - 1).mSum;
    }
};

复杂度分析

假设序列 a a a 的长度为 n n n

  • 时间复杂度:假设我们把递归的过程看作是一颗二叉树的先序遍历,那么这颗二叉树的深度的渐进上界为 O ( l o g n ) O(logn) O(logn) ,这里的总时间相当于遍历这颗二叉树的所有节点,故总时间的渐进上界是 O ( ∑ i = 1 l o g n 2 i − 1 ) = O ( n ) O(\sum_{i=1}^{log{n}} 2^{i-1}) = O(n) O(i=1logn2i1)=O(n) ,故渐进时间复杂度为 O ( n ) O(n) O(n)
  • 空间复杂度:递归会使用 O ( l o g n ) O(logn) O(logn) 的栈空间,故渐进空间复杂度为 O ( l o g n ) O(logn) O(logn)

题外话

「方法二」相较于「方法一」来说,时间复杂度相同,但是因为使用了递归,并且维护了四个信息的结构体,运行的时间略长,空间复杂度也不如方法一优秀,而且难以理解。那么这种方法存在的意义是什么呢?

对于这道题而言,确实是如此的。但是仔细观察「方法二」,它不仅可以解决区间 [ 0 , n − 1 ] [0,n−1] [0,n1] ,还可以用于解决任意的子区间 [ l , r ] [l,r] [l,r] 的问题。如果我们把 [ 0 , n − 1 ] [0,n−1] [0,n1] 分治下去出现的所有子区间的信息都用堆式存储的方式记忆化下来,即建成一棵真正的树之后,我们就可以在 O ( l o g n ) O(logn) O(logn) 的时间内求到任意区间内的答案,我们甚至可以修改序列中的值,做一些简单的维护,之后仍然可以在 O ( l o g n ) O(logn) O(logn) 的时间内求到任意区间内的答案,对于大规模查询的情况下,这种方法的优势便体现了出来。这棵树就是上文提及的一种神奇的数据结构——线段树


392. 判断子序列

点此跳转题目链接

题目描述

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

致谢:

特别感谢 @pbrother 添加此问题并且创建所有测试用例。

示例 1:

输入:s = "abc", t = "ahbgdc"
输出:true

示例 2:

输入:s = "axc", t = "ahbgdc"
输出:false

提示:

  • 0 <= s.length <= 100
  • 0 <= t.length <= 10^4
  • 两个字符串都只由小写字符组成。

题解

双指针

首先想到的是双指针方法:两个指针分别遍历 st ,遇到相同的字符就都往前走,否则 t 的指针往前走,以试图找到与当前 s 中字符相同的字符。最后,如果 s 的指针成功走到末尾,说明 s 这个序列在 t 中找到了,即它是 t 的子串。

这应该是最简单且符合直觉的算法了。

代码(C++)

bool isSubsequence(string s, string t) // 双指针
{
    int sp = 0;
    int tp = 0;
    while (sp < s.size() && tp < t.size()) {
        if (s[sp] == t[tp]) 
            sp++;
        tp++;
    }
    return sp == s.size();
}

动态规划

子序列问题

此外,这题其实完全可以套用动态规划子序列问题的算法:如果 st 的子序列,则 st 的最长公共子序列长度就是 s 的长度。

bool isSubsequence(string s, string t)
{
    vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
    for (int i = 1; i <= s.size(); ++i)
    {
        int k = t.size() - s.size() + i; // 优化搜索范围:t中没检查的字符数量要多于s中的
        for (int j = 1; j <= k; ++j)
        {
            if (s[i - 1] == t[j - 1])
                dp[i][j] = dp[i - 1][j - 1] + 1;
            else
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
        }
    }
    return dp[s.size()][t.size()] == s.size();
}

动态规划预处理+双指针

考虑题目进阶要求中大量重复(数十亿次)判断子序列的情况,即使采用上面算法中较快的双指针法,每次都要进行 O ( n ) O(n) O(n) 的计算,不够高效。

可以发现,每次计算花费了大部分时间用于 t 中寻找下一个匹配 s 的字符 ,也就是说如果我们可以通过预处理,提前记录 对于 t 的任意位置 i ,从 i 起往后各字符(本题中即26个英文字母)第一次出现的次数 ,那么每次查找匹配字符就变成 O ( 1 ) O(1) O(1) 的操作了 🎉 ​

这个预处理部分就可以用动态规划解决:

  • dp 数组的含义: dp[i][j] 表示 t 中从位置 i 开始,下一次出现字符 j (用数字一一对应字符)的位置(包括 i
  • 状态转移方程:
    • 如果 t[i] 对应的就是字符 j ,那么目标位置就是 idp[i][j] = i
    • 否则,要在 i 后面去找,即: dp[i][j] = dp[i + 1][j] (由此看出,要逆序构建 dp

代码上,为了方便,可以将 dp[t.size()][...] 全部初始化为 t.size() ,表示已经找到末尾、不会再出现目标字符了。

代码(C++)

bool isSubsequence(string s, string t) // DP预处理+双指针
{
    // 预处理
    vector<vector<int>> dp(t.size() + 1, vector<int>(26, t.size()));
    for (int i = t.size() - 1; i >= 0; --i) {
        int charNum = t[i] - 'a';
        for (int j = 0; j < 26; ++j) 
            dp[i][j] = charNum == j ? i : dp[i + 1][j];
    }

    // 双指针匹配
    int sp = 0;
    int tp = 0;
    while (sp < s.size() && tp < t.size()) {
        tp = dp[tp][s[sp] - 'a']; // 利用预处理结果
        if (s[sp] == t[tp]) 
            sp++, tp++;
    }

    return sp == s.size();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值