第P5周:运动鞋识别

一、前期准备

1.设置GPU

import torch
import matplotlib.pyplot as plt
from torchvision import transforms, datasets

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print(device)

2.导入数据

import os, PIL, random, pathlib

data_dir = pathlib.Path('./data/')

data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]

print(classNames)
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

test_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

train_dataset = datasets.ImageFolder("./data/train", transform=train_transforms)
test_dataset = datasets.ImageFolder("./data/test", transform=test_transforms)

print(train_dataset.class_to_idx)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size,
                                       shuffle=True)

test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size,
                                      shuffle=True)

3.检查数据

for images, labels in test_dl:
    print("Shape of images [N, C, H, W]: ", images.shape)
    print("Shape of labels: ", labels.shape, labels.dtype)
    break

二、构建简单的CNN网络

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1=nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0),
            nn.BatchNorm2d(12),
            nn.ReLU()
        )

        self.conv2=nn.Sequential(
            nn.Conv2d(12, 12, kernel_size=5, padding=0),
            nn.BatchNorm2d(12),
            nn.ReLU()
        )

        self.pool3=nn.Sequential(
            nn.MaxPool2d(2)
        )

        self.conv4=nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0),
            nn.BatchNorm2d(24),
            nn.ReLU()
        )

        self.conv5=nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0),
            nn.BatchNorm2d(24),
            nn.ReLU()
        )

        self.pool6=nn.Sequential(
            nn.MaxPool2d(2)
        )

        self.dropout=nn.Sequential(
            nn.Dropout(0.5)
        )

        self.fc=nn.Sequential(
            nn.Linear(24*50*50, len(classNames)),
            nn.Dropout(0.3)
        )

    def forward(self, x):

        batch_size = x.size(0)
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.pool3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.pool6(x)
        x = self.dropout(x)
        # print(x.shape)
        x = x.view(batch_size, -1)  # flatten 编程全连接网络需要的输入(batch, 24*50*50_4
        x = self.fc(x)
        x = self.dropout(x)

        return x


device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Model().to(device)
print(model)

三、训练模型

1.编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size, 向上取整)

    train_loss, train_acc = 0, 0  # 出书画训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)
        loss = loss_fn(pred, y)

        # 反向传播
        optimizer.zero_grad()  # grad 属性归零
        loss.backward()   # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc 与 loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2.编写测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)

    test_loss, test_acc = 0, 0

    # 当不进行训练时, 停止梯度更新, 节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.设置动态学习率

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每2个epoch衰减到原来的0.92
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-4  # 初始学习率
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)

4.正式训练

loss_fn = nn.CrossEntropyLoss()  # 创建损失汉书
epochs = 50

train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model,  loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))
print('Done')

执行结果:

Epoch: 1, Train_acc:54.0%, Train_loss:2.062, Test_acc:50.0%, Test_loss:0.818, Lr:1.00E-04
Epoch: 2, Train_acc:55.2%, Train_loss:0.983, Test_acc:56.6%, Test_loss:0.678, Lr:1.00E-04
Epoch: 3, Train_acc:57.8%, Train_loss:0.851, Test_acc:67.1%, Test_loss:0.644, Lr:9.20E-05
Epoch: 4, Train_acc:67.7%, Train_loss:0.615, Test_acc:64.5%, Test_loss:0.645, Lr:9.20E-05
Epoch: 5, Train_acc:70.9%, Train_loss:0.539, Test_acc:57.9%, Test_loss:0.698, Lr:8.46E-05
Epoch: 6, Train_acc:78.1%, Train_loss:0.497, Test_acc:69.7%, Test_loss:0.652, Lr:8.46E-05
Epoch: 7, Train_acc:79.5%, Train_loss:0.449, Test_acc:67.1%, Test_loss:0.652, Lr:7.79E-05
Epoch: 8, Train_acc:80.1%, Train_loss:0.433, Test_acc:68.4%, Test_loss:0.626, Lr:7.79E-05
Epoch: 9, Train_acc:83.9%, Train_loss:0.392, Test_acc:67.1%, Test_loss:0.601, Lr:7.16E-05
Epoch:10, Train_acc:85.9%, Train_loss:0.369, Test_acc:65.8%, Test_loss:0.634, Lr:7.16E-05
Epoch:11, Train_acc:84.1%, Train_loss:0.388, Test_acc:75.0%, Test_loss:0.556, Lr:6.59E-05
Epoch:12, Train_acc:83.9%, Train_loss:0.350, Test_acc:64.5%, Test_loss:0.676, Lr:6.59E-05
Epoch:13, Train_acc:82.1%, Train_loss:0.396, Test_acc:76.3%, Test_loss:0.522, Lr:6.06E-05
Epoch:14, Train_acc:87.3%, Train_loss:0.324, Test_acc:63.2%, Test_loss:0.613, Lr:6.06E-05
Epoch:15, Train_acc:90.8%, Train_loss:0.267, Test_acc:68.4%, Test_loss:0.581, Lr:5.58E-05
Epoch:16, Train_acc:89.6%, Train_loss:0.280, Test_acc:76.3%, Test_loss:0.526, Lr:5.58E-05
Epoch:17, Train_acc:89.8%, Train_loss:0.272, Test_acc:77.6%, Test_loss:0.514, Lr:5.13E-05
Epoch:18, Train_acc:89.6%, Train_loss:0.278, Test_acc:78.9%, Test_loss:0.529, Lr:5.13E-05
Epoch:19, Train_acc:91.2%, Train_loss:0.235, Test_acc:73.7%, Test_loss:0.569, Lr:4.72E-05
Epoch:20, Train_acc:93.4%, Train_loss:0.211, Test_acc:76.3%, Test_loss:0.546, Lr:4.72E-05
Epoch:21, Train_acc:94.6%, Train_loss:0.198, Test_acc:76.3%, Test_loss:0.551, Lr:4.34E-05
Epoch:22, Train_acc:93.0%, Train_loss:0.205, Test_acc:78.9%, Test_loss:0.498, Lr:4.34E-05
Epoch:23, Train_acc:94.6%, Train_loss:0.195, Test_acc:81.6%, Test_loss:0.510, Lr:4.00E-05
Epoch:24, Train_acc:95.0%, Train_loss:0.183, Test_acc:80.3%, Test_loss:0.485, Lr:4.00E-05
Epoch:25, Train_acc:94.8%, Train_loss:0.184, Test_acc:80.3%, Test_loss:0.492, Lr:3.68E-05
Epoch:26, Train_acc:94.0%, Train_loss:0.186, Test_acc:78.9%, Test_loss:0.529, Lr:3.68E-05
Epoch:27, Train_acc:96.2%, Train_loss:0.167, Test_acc:80.3%, Test_loss:0.479, Lr:3.38E-05
Epoch:28, Train_acc:96.0%, Train_loss:0.167, Test_acc:80.3%, Test_loss:0.477, Lr:3.38E-05
Epoch:29, Train_acc:96.8%, Train_loss:0.157, Test_acc:82.9%, Test_loss:0.478, Lr:3.11E-05
Epoch:30, Train_acc:96.4%, Train_loss:0.148, Test_acc:81.6%, Test_loss:0.537, Lr:3.11E-05
Epoch:31, Train_acc:96.4%, Train_loss:0.142, Test_acc:81.6%, Test_loss:0.517, Lr:2.86E-05
Epoch:32, Train_acc:97.2%, Train_loss:0.142, Test_acc:82.9%, Test_loss:0.473, Lr:2.86E-05
Epoch:33, Train_acc:97.4%, Train_loss:0.144, Test_acc:81.6%, Test_loss:0.465, Lr:2.63E-05
Epoch:34, Train_acc:97.6%, Train_loss:0.136, Test_acc:82.9%, Test_loss:0.475, Lr:2.63E-05
Epoch:35, Train_acc:97.8%, Train_loss:0.130, Test_acc:82.9%, Test_loss:0.510, Lr:2.42E-05
Epoch:36, Train_acc:97.8%, Train_loss:0.127, Test_acc:82.9%, Test_loss:0.458, Lr:2.42E-05
Epoch:37, Train_acc:97.6%, Train_loss:0.131, Test_acc:81.6%, Test_loss:0.466, Lr:2.23E-05
Epoch:38, Train_acc:97.6%, Train_loss:0.118, Test_acc:81.6%, Test_loss:0.528, Lr:2.23E-05
Epoch:39, Train_acc:98.2%, Train_loss:0.118, Test_acc:81.6%, Test_loss:0.512, Lr:2.05E-05
Epoch:40, Train_acc:98.4%, Train_loss:0.115, Test_acc:81.6%, Test_loss:0.516, Lr:2.05E-05
Epoch:41, Train_acc:98.0%, Train_loss:0.112, Test_acc:84.2%, Test_loss:0.493, Lr:1.89E-05
Epoch:42, Train_acc:97.6%, Train_loss:0.121, Test_acc:82.9%, Test_loss:0.507, Lr:1.89E-05
Epoch:43, Train_acc:97.4%, Train_loss:0.112, Test_acc:86.8%, Test_loss:0.450, Lr:1.74E-05
Epoch:44, Train_acc:98.0%, Train_loss:0.107, Test_acc:81.6%, Test_loss:0.449, Lr:1.74E-05
Epoch:45, Train_acc:98.2%, Train_loss:0.104, Test_acc:86.8%, Test_loss:0.473, Lr:1.60E-05
Epoch:46, Train_acc:98.6%, Train_loss:0.099, Test_acc:86.8%, Test_loss:0.457, Lr:1.60E-05
Epoch:47, Train_acc:98.6%, Train_loss:0.100, Test_acc:81.6%, Test_loss:0.432, Lr:1.47E-05
Epoch:48, Train_acc:98.0%, Train_loss:0.100, Test_acc:86.8%, Test_loss:0.429, Lr:1.47E-05
Epoch:49, Train_acc:98.6%, Train_loss:0.103, Test_acc:86.8%, Test_loss:0.484, Lr:1.35E-05
Epoch:50, Train_acc:98.2%, Train_loss:0.094, Test_acc:86.8%, Test_loss:0.451, Lr:1.35E-05
Epoch:51, Train_acc:98.6%, Train_loss:0.098, Test_acc:86.8%, Test_loss:0.433, Lr:1.24E-05
Epoch:52, Train_acc:98.8%, Train_loss:0.100, Test_acc:86.8%, Test_loss:0.426, Lr:1.24E-05
Epoch:53, Train_acc:98.6%, Train_loss:0.094, Test_acc:86.8%, Test_loss:0.487, Lr:1.14E-05
Epoch:54, Train_acc:98.6%, Train_loss:0.097, Test_acc:86.8%, Test_loss:0.434, Lr:1.14E-05
Epoch:55, Train_acc:98.4%, Train_loss:0.101, Test_acc:86.8%, Test_loss:0.456, Lr:1.05E-05
Epoch:56, Train_acc:97.8%, Train_loss:0.099, Test_acc:86.8%, Test_loss:0.432, Lr:1.05E-05
Epoch:57, Train_acc:98.0%, Train_loss:0.099, Test_acc:86.8%, Test_loss:0.439, Lr:9.68E-06
Epoch:58, Train_acc:98.4%, Train_loss:0.098, Test_acc:86.8%, Test_loss:0.481, Lr:9.68E-06
Epoch:59, Train_acc:98.4%, Train_loss:0.090, Test_acc:86.8%, Test_loss:0.468, Lr:8.91E-06
Epoch:60, Train_acc:98.8%, Train_loss:0.083, Test_acc:86.8%, Test_loss:0.431, Lr:8.91E-06
Epoch:61, Train_acc:98.6%, Train_loss:0.090, Test_acc:86.8%, Test_loss:0.444, Lr:8.20E-06
Epoch:62, Train_acc:98.4%, Train_loss:0.084, Test_acc:86.8%, Test_loss:0.445, Lr:8.20E-06
Epoch:63, Train_acc:99.2%, Train_loss:0.079, Test_acc:86.8%, Test_loss:0.503, Lr:7.54E-06
Epoch:64, Train_acc:99.0%, Train_loss:0.081, Test_acc:86.8%, Test_loss:0.489, Lr:7.54E-06
Epoch:65, Train_acc:99.0%, Train_loss:0.079, Test_acc:86.8%, Test_loss:0.432, Lr:6.94E-06
Epoch:66, Train_acc:98.8%, Train_loss:0.082, Test_acc:86.8%, Test_loss:0.446, Lr:6.94E-06
Epoch:67, Train_acc:99.2%, Train_loss:0.081, Test_acc:86.8%, Test_loss:0.466, Lr:6.38E-06
Epoch:68, Train_acc:98.2%, Train_loss:0.086, Test_acc:86.8%, Test_loss:0.468, Lr:6.38E-06
Epoch:69, Train_acc:99.0%, Train_loss:0.083, Test_acc:86.8%, Test_loss:0.459, Lr:5.87E-06
Epoch:70, Train_acc:99.2%, Train_loss:0.082, Test_acc:86.8%, Test_loss:0.475, Lr:5.87E-06
Done

四、结果可视化

1.Loss与Accuracy图

import matplotlib.pyplot as plt
# 隐藏警告
import warnings
warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100              # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

执行结果:
image-20230901200738259

2.指定图片进行预测

predict_one_image(image_path='./data/test/adidas/1.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

执行结果:

预测结果是:adidas

五、保存并加载模型

# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值