第T2周:彩色图片分类

要求:

  • 学习如何编写一个完整的深度学习程序
  • 了解分类彩色图片和灰度图片有什么区别
  • 测试集accuracy达到72%

我的环境:

  • 语言环境:Python 3.8.10
  • 编译器:JupyterLab
  • 深度学习框架:TensorFlow 2.13.1
  • 显卡(GPU):NVIDIA GeForce RTX 3080 Ti

一、前期工作

1.设置GPU

如果使用的是CPU可以忽略这步。

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

2.导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

执行结果:

((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))

4.可视化

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

执行结果:

image-20240108140000333

二、构建CNN网络

平面结构图:

image.png

立体结构图:

image.png

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
    
    layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
    layers.Dense(10)                       #输出层,输出预期结果
])

model.summary()  # 打印网络结构

执行结果:

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 30, 30, 32)        896       
                                                                 
 max_pooling2d (MaxPooling2  (None, 15, 15, 32)        0         
 D)                                                              
                                                                 
 conv2d_1 (Conv2D)           (None, 13, 13, 64)        18496     
                                                                 
 max_pooling2d_1 (MaxPoolin  (None, 6, 6, 64)          0         
 g2D)                                                            
                                                                 
 conv2d_2 (Conv2D)           (None, 4, 4, 64)          36928     
                                                                 
 flatten (Flatten)           (None, 1024)              0         
                                                                 
 dense (Dense)               (None, 64)                65600     
                                                                 
 dense_1 (Dense)             (None, 10)                650       
                                                                 
=================================================================
Total params: 122570 (478.79 KB)
Trainable params: 122570 (478.79 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

三、编译

model.compile(optimizer='adam',
             loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
             metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10,
                    validation_data=(test_images, test_labels))

执行结果:

Epoch 1/10
1563/1563 [==============================] - 13s 7ms/step - loss: 1.5189 - accuracy: 0.4456 - val_loss: 1.2919 - val_accuracy: 0.5370
Epoch 2/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.1395 - accuracy: 0.5985 - val_loss: 1.0768 - val_accuracy: 0.6214
Epoch 3/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.9872 - accuracy: 0.6556 - val_loss: 0.9638 - val_accuracy: 0.6660
Epoch 4/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.8951 - accuracy: 0.6873 - val_loss: 0.9616 - val_accuracy: 0.6682
Epoch 5/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.8207 - accuracy: 0.7130 - val_loss: 0.8736 - val_accuracy: 0.7010
Epoch 6/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.7677 - accuracy: 0.7328 - val_loss: 0.8919 - val_accuracy: 0.6953
Epoch 7/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.7189 - accuracy: 0.7470 - val_loss: 0.9046 - val_accuracy: 0.6909
Epoch 8/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.6747 - accuracy: 0.7651 - val_loss: 0.8532 - val_accuracy: 0.7106
Epoch 9/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.6348 - accuracy: 0.7786 - val_loss: 0.8466 - val_accuracy: 0.7182
Epoch 10/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.5932 - accuracy: 0.7908 - val_loss: 0.8911 - val_accuracy: 0.7154

五、预测

通过模型预测得到的是每一个类别的概率,数字越大该图片的为该类别的可能性就越大。

plt.imshow(test_images[1])

image-20240108140126524

import numpy as np

pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])

执行结果:

ship

六、模型评估

import matplotlib.pyplot as plt

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.show()

test_loss, test_accuracy = model.evaluate(test_images, test_labels, verbose=2)

执行结果:

image-20240108174807500

313/313 - 1s - loss: 0.8911 - accuracy: 0.7154
print(test_accuracy)
0.715399980545044

七、模型改进

由于本周打卡其中一个任务是提高测试集accuracy准确率达到72%以上,所以我对优化器进行了一个小小的修改,修改了其中的学习率,同时在CNN网络结构中添加了Dropout层,并且将epochs增加至100。

image-20240108194022666

image-20240108194104080

image-20240108194146910

import matplotlib.pyplot as plt

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')

test_loss, test_accuracy = model.evaluate(test_images, test_labels, verbose=2)

执行结果为:

image-20240108194229786

测试集准确率为:
image-20240108194315121

八、个人总结

本周的深度学习打卡内容是使用TensorFlow框架进行彩色图片分类,首先学习了如何编写一个完整的深度学习程序。本次流程为:设置GPU——导入数据——处理数据——数据可视化——构建简单的CNN网络——编译——训练模型——进行预测——模型评估——模型改进。通过与上周的第T1周:实现mnist手写数字识别对比,在进行归一化时,可知彩色图片分类为RGB三通道,而灰度图片是单通道。最后一个任务是提高测试集的accuracy达到72%以上,自己通过一些尝试(见七、模型改进),将准确率由最初的71.54%提升到了76.55%

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值