torch.gather
b = torch.Tensor([[1,2,3],[4,5,6]])
print(b)
index_1 = torch.LongTensor([[0,1],[2,0]])
index_2 = torch.LongTensor([[0,1,1],[0,0,0]])
print(torch.gather(b, dim=1, index=index_1))
print(torch.gather(b, dim=0, index=index_2))
b:
tensor([[1., 2., 3.],
[4., 5., 6.]])
index_1:
tensor([[0, 1],
[2, 0]])
index_2:
tensor([[0, 1, 1],
[0, 0, 0]])
print(torch.gather(b, dim=1, index=index_1))
tensor([[1., 2.],
[6., 4.]])
print(torch.gather(b, dim=0, index=index_2))
tensor([[1., 5., 6.],
[1., 2., 3.]])
- 如果dim = 1:index_1中元素为对应b中行元素的索引。
- 如果dim = 2:index_2第一列元素(0,0)对应b中的第一列,所以取出(1,1)元素,index_2第二列元素(1,0)对应b中的第二列,所以取出(5,2)元素,index_2第三列元素(1,0)对应b中的第一列,所以取出(6,3)元素.
torch.eq(predict_ labels, labels)
式中predict_ labels与labels是两个大小相同的tensor,而torch.eq()函数就是用来比较对应位置数字,相同则为True,否则为False,输出与那两个tensor大小相同,并且其中只有True和False。
predict_labels = torch.LongTensor([0,1, 2, 3 ,4])
labels = torch.LongTensor([4,3,2,1,4])
torch.eq(predict_labels, labels)
Out[15]: tensor([False, False, True, False, True])
torch.eq(predict_labels, labels).sum()
Out[16]: tensor(2)
torch.eq(predict_labels, labels).sum().item()
Out[17]: 2