pytorch--初识张量与常见基础函数(1)

本文介绍了PyTorch中的张量概念,包括张量的定义、访问元素的方法、常用数据类型,以及如何创建张量和进行数据类型转换。此外,还讨论了基础的张量操作,如`torch.tensor`和`torch.empty`,以及张量的数据类型转换函数。
摘要由CSDN通过智能技术生成

目录

张量的定义

张量的概念

访问元素

张量常用数据类型

张量的创建及其数据类型转换

张量的简单创建

张量的数据类型转换

常用的基础函数



张量的定义

张量的概念

        张量(Tensor)是Pytorch、TensorFlow等深度学习框架的基础运算单位,与python中Numpy工具包的ndarray类似。不同的是GPU可以很好地支持加速计算,而Numpy仅支持CPU计算,这样可以哒哒地加快运算速度。张量为包含单一数据类型的元素的多维矩阵(没有轴只有大小的标量可以视为零阶张量,有一个轴既有大小又有方向的矢量可以视为一阶张量,有两个轴的矩阵可以视为二阶张量,具有两个轴以上的张量没有特殊的数学名称)。

访问元素

 

张量常用数据类型

Tensor在Pytorch中常用的基本数据类型:

torch.FloatTensor    #Tensor默认数据类型32位浮点型
torch.DoubleTensor   #64位浮点型
torch.LongTensor     #64位整型
torch.IntTensor      #32位整型
torch.ShortTensor    #16位整型

不常用数据类型:

torch.BoolTensor    #布尔类型
torch.ByteTensor    #byte类型
torch.HalfTensor    #半精度浮点类型
torch.CharTensor    #char类型

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乱花渐欲迷人眼~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值