目录
张量的定义
张量的概念
张量(Tensor)是Pytorch、TensorFlow等深度学习框架的基础运算单位,与python中Numpy工具包的ndarray类似。不同的是GPU可以很好地支持加速计算,而Numpy仅支持CPU计算,这样可以哒哒地加快运算速度。张量为包含单一数据类型的元素的多维矩阵(没有轴只有大小的标量可以视为零阶张量,有一个轴既有大小又有方向的矢量可以视为一阶张量,有两个轴的矩阵可以视为二阶张量,具有两个轴以上的张量没有特殊的数学名称)。
访问元素
张量常用数据类型
Tensor在Pytorch中常用的基本数据类型:
torch.FloatTensor #Tensor默认数据类型32位浮点型
torch.DoubleTensor #64位浮点型
torch.LongTensor #64位整型
torch.IntTensor #32位整型
torch.ShortTensor #16位整型不常用数据类型:
torch.BoolTensor #布尔类型
torch.ByteTensor #byte类型
torch.HalfTensor #半精度浮点类型
torch.CharTensor #char类型