codeforces 1713 problem C Build Permutation(思维构造+数论)

本文详细介绍了如何找到一个0到n-1的全排列,使得每个数加上其下标等于某个平方数。通过数学定理和算法实现,给出了C++代码示例,展示了如何从后往前构建满足条件的排列。该问题涉及到数组操作、数学推理及动态规划思想。
摘要由CSDN通过智能技术生成

input:

3
3
4
7

output:

1 0 2 
0 3 2 1 
1 0 2 6 5 4 3 
 题目大意:给我们一个数n,让我们找出一个0~n-1的全排列,a[0]~a[n-1],0<=a[i]<n,并且每个数都满足a[i]+i为某个数的平方,让我们输出这个排列,如果不存在输出-1。

解题思路:首先我们要知道一个定理,对于一个数字n,区间[n,2n]中一定存在一个平方数,然后我们从后往前看,对于第x1个数,我们找到比它大的最小的一个平方数s,令x2=s-x1,那么我们就只需要将从x2到x1这段数字颠倒即可,这里根据我们之前给出的定理可以知道x2<=x1,处理完一段后再处理前面,这样我们其实可以发现,对于任意一个n,我们都可以找到一个0~n-1的排列使其满足条件。

上代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
const int N=1e5+10;
int a[N];
int t,n;
int main()
{
	cin>>t;
	while(t--)
	{
		scanf("%d",&n);
		for(int i=0;i<n;i++)
		a[i]=i;
		int last=n-1;
		vector<pair<int,int>>temp;
		while(last>=0)
		{
			int s=ceil(sqrt((double)last));
			s=s*s;
			int pre=s-last;
			temp.push_back({pre,last});
			last=pre-1;
		}
		
		for(auto p:temp)
		{
			int l=p.first,r=p.second;
			for(int i=l;i<=r;i++)
			a[i]=l+r-i;
		}
		for(int i=0;i<n;i++)
		{
			cout<<a[i];
			if(i==n-1)
			cout<<endl;
			else
			cout<<" ";
		}
	}
	return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值