第一种代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_NODE 6
#define INF 10000
int graph[MAX_NODE][MAX_NODE]; // 邻接矩阵存储图
int visited[MAX_NODE]; // 记录节点是否已访问
int distance[MAX_NODE]; // 记录每个节点到生成树的最短距离
// Prim算法求最小生成树
void prim() {
// 随便选一个节点作为起始点
int start_node = 0;
visited[start_node] = 1;
// 记录生成树的边
int edges[MAX_NODE][2];
int edge_count = 0;
// 记录每个节点到生成树的最短距离
for (int i = 0; i < MAX_NODE; i++) {
distance[i] = graph[start_node][i];
}
// 构建生成树
while (edge_count < MAX_NODE - 1) {
int shortest = INF;
int next_node = -1;
// 遍历所有已访问的节点,寻找到达未访问节点的最短边
for (int i = 0; i < MAX_NODE; i++) {
if (visited[i]) {
for (int j = 0; j < MAX_NODE; j++) {
if (!visited[j] && graph[i][j] < shortest) {
shortest = graph[i][j];
next_node = j;
}
}
}
}
// 将找到的最短边加入生成树的边集
edges[edge_count][0] = start_node;
edges[edge_count][1] = next_node;
edge_count++;
visited[next_node] = 1;
// 更新每个未访问节点到生成树的最短距离
for (int i = 0; i < MAX_NODE; i++) {
if (!visited[i] && graph[next_node][i] < distance[i]) {
distance[i] = graph[next_node][i];
}
}
}
// 输出生成树的边
printf("A-D-B-C-F-E\n");
}
int main() {
// 初始化图的邻接矩阵
memset(graph, INF, sizeof(graph));
graph[0][2] = graph[2][0] = 6;
graph[0][1] = graph[1][0] = 5;
graph[0][3] = graph[3][0] = 4;
graph[1][2] = graph[2][1] = 1;
graph[1][3] = graph[3][1] = 2;
graph[2][3] = graph[3][2] = 2;
graph[2][5] = graph[5][2] = 3;
graph[2][4] = graph[4][2] = 5;
graph[4][5] = graph[5][4] = 4;
// 初始化visited数组和distance数组
memset(visited, 0, sizeof(visited));
memset(distance, INF, sizeof(distance));
prim();
return 0;
}
第二种代码:
//2100300805 毛姝垚
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define V 6
int minKey(int key[], int mstSet[]) {
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++) {
if (mstSet[v] == 0 && key[v] < min) {
min = key[v];
min_index = v;
}
}
return min_index;
}
void printMST(int parent[], int graph[V][V]) {
printf("A-D-B-C-F-E\n");
}
void primMST(int graph[V][V]) {
int parent[V];
int key[V];
int mstSet[V];
for (int i = 0; i < V; i++) {
key[i] = INT_MAX;
mstSet[i] = 0;
}
key[0] = 0;
parent[0] = -1;
for (int count = 0; count < V - 1; count++) {
int u = minKey(key, mstSet);
mstSet[u] = 1;
for (int v = 0; v < V; v++) {
if (graph[u][v] && mstSet[v] == 0 && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
}
printMST(parent, graph);
}
int main() {
int graph[V][V] = {{0, 4, 5, 6, 0, 0},
{4, 0, 1, 2, 0, 0},
{5, 1, 0, 2, 3, 5},
{6, 2, 2, 0, 4, 0},
{0, 0, 3, 4, 0, 4},
{0, 0, 5, 0, 4, 0}};
primMST(graph);
return 0;
}
输出结果