【学习笔记】第四章 概率论与数理统计

目录

4.1 随机变量的概率计算和数字特征

4.1.1 随机变量的概率计算

4.1.2 随机变量数字特征简介

4.1.3 随机变量数字特征计算及应用

4.2 描述性统计和统计图

4.2.1 统计的基础知识

1. 样本和总体

2. 频数表和直方图

3. 统计量

 4.2.2 用python计算统计量

1. 使用Numpy计算统计量

4.2.3 统计图 

1. 频数图及直方图

 2. 线箱图

 3. 经验分布函数

 4. Q-Q图

4.3 参数估计和假设检验

4.3.1 参数估计

1. 极大似然估计

 2. 区间估计

4.3.2 参数假设检验(知道总体服从什么类型的分布)

1. 单个总体均值的假设检验

4.3.3 非参数假设检验(不知道总体服从什么类型的分布)

1. 分布拟合检验( ​ 检验法)

 2. Kolmogorov-Smirnov检验

 4.4 方差分析

 4.4.1 单因素方差分析及python实现

4.4.2 双因素方差分析及python实现

 1. 数学模型


4.1 随机变量的概率计算和数字特征

4.1.1 随机变量的概率计算

例4.1 设 X\sim N(3,5^2) (1)求P{2<X<6};(2)确定c,使P{-3c<X<2c}=0.6

from scipy.stats import norm
from scipy.optimize import fsolve
print("p=",norm.cdf(6,3,5)-norm.cdf(2,3,5))#做差,后减前
f=lambda c: norm.cdf(2*c,3,5)-norm.cdf(-3*c,3,5)-0.6
print("c=",fsolve(f,0))

 定义4.1 α分位数

若连续型随机变量X的分布函数为 F(x) ,对于0<α<1,若 x_\alpha 使得 P\left \{ X\leq x_\alpha \right \}=\alpha,则称 x_\alpha 为这个分布的α分位数。若 F(x) 的反函数F^{-1}(x)存在,则有 x_\alpha =F^{-1}(1-\alpha )

 定义4.2 上α分位数

若连续型随机变量X的分布函数为 F(x),对于0<\alpha <1,若 \tilde{x}_\alpha 使得 P\left \{ X>\tilde{x}_\alpha \right \}=\alpha ,则称 \tilde{x}_\alpha 为这个分布的上α分位数。 若 F(x) 的反函数F^{-1}(x)存在,则有\tilde{x}_\alpha =F^{-1}(1-\alpha ) 

例4.2 设 X\sim N(0,1) ,若 z_\alpha 满足条件 P\left \{X > z_\alpha \right \}= \alpha ,0<\alpha <1 ,则称 z_\alpha 为标准正态分布的上α分位数。试计算几个常用的 z_\alpha 的值,并画出 z_{0.1} 的示意图.
计算得到几个常用的 z_\alpha 的值见下表,z_{0.1} 的示意图见下图:

from scipy.stats import norm
from pylab import plot,fill_between,show,text,savefig,rc 
from numpy import array, linspace, zeros
alpha=array([0.001, 0.005, 0.01, 0.025, 0.05, 0.10])#表中给的alpha的值
za=norm.ppf(1-alpha,0,1)  #求上alpha分位数  #定义4.2
print("上alpha分位数分别为", za)
x=linspace(-4, 4, 100); y=norm.pdf(x, 0, 1)
rc('font',size=16); rc('text',usetex=True)
plot(x,y)  #画标准正态分布密度曲线
x2=linspace(za[-1],4,100)#在0.1对应的上alpha分位数和4之间取100个点
y2=norm.pdf(x2);
y1=[0]*len(x2)
fill_between(x2, y1, y2, color='r')  #y1,y2对应的点之间填充
plot([-4,4],[0,0])  #画水平线    # [-4,0]|[4,0]
text(1.9, 0.07, "$\\leftarrow\\alpha$=0.1")  #标注
savefig("figure4_2.png", dpi=500); show()

 

 

4.1.2 随机变量数字特征简介

定义4.3:设随机变量X的分布律为:P\left \{ X=x_k \right \}=p_k,k=1,2,\cdots ,

若级数 \sum_{k=1}^{\infty }x_kp_k 绝对收敛,则称级数 \sum_{k=1}^{\infty }x_kp_k 的和为随机变量X的数学期望,记为 E(X) ,即  E(X)=\sum_{k=1}^{\infty }x_kp_k

定义4.4:设X是一个随机变量,若 E\left \{ [X-E(X)]^2 \right \} 存在,则称 E\left \{ [X-E(X)]^2 \right \} 为X的方差,记为D(X)或Var(X),即:

D(X)=Var(X)=E\left \{ [X-E(X)]^2 \right \}

\sigma (x)=\sqrt{D(X)} 称为标准差或均方差。

方差其实就是随机变量X的函数 g(X)= [X-E(X)]^2 的数学期望

定义4.5:随机变量X的偏度和峰度指的是X的标准化变量(X-E(X))/\sqrt{D(X)}的三阶中心距和四阶中心矩:

v_1=E[(\frac{X-E(x)}{\sqrt{D(X)}})^3]=\frac{E[(X-E(X))^3]}{(D(X))^2}

v_2=E[(\frac{X-E(x)}{\sqrt{D(X)}})^4]=\frac{E[(X-E(X))^4]}{(D(X))^2}

定义4.6:E\{[X-E(X)][Y-E(Y)]\}称为随机变量X与Y的协方差,记为Cov(X,Y),即

Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\}

而  \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} 称为随机变量X与Y的相关系数。、

定义4.7:k阶矩,中心矩,混合矩,混合中心矩

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值