数学建模-MATLAB神经网络工具箱实现数据拟合预测

  1. 将数据集保存在矩阵data中

  1. 在APP页面找到Neural Net Fitting

3.输入与目标均为 data,Samples are 选择 Matrix rows

4.训练集和验证集的百分比可以自定义,一般默认

  1. 三种算法,各有优劣,一般默认第一个,点击Train进行训练

4.点击Performance

5.以此图为例,13.1572代表误差,误差越低越好,可以通过retrain和改变算法来降低误差

6.点击regression

7.三张图分别代表训练集验证集和综合数据的拟合程度,越接近1 效果越好

8.点击next三次

9.点击save results将训练网络保存到matlab工作区

10.若在工作区看到以下三个变量代表保存成功

1预测示例代码如下

% 写一个循环,预测接下来的十个样本的辛烷值

% 注意要将指标变为列向量,然后再用sim函数预测

predict_y = zeros(10,1); % 初始化predict_y

for i = 1: 10

result = sim(net, new_X(i,:)');

predict_y(i) = result;

end

disp('预测值为:')

disp(predict_y)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2ephyr

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值