【数学】矩阵与矩阵运算

注:本文只适用于C++党使用。

一、矩阵:

1.定义:由 m × n m \times n m×n个数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) a_{ij} (i = 1, 2,\cdots,m; j = 1, 2,\cdots ,n) aij(i=1,2,,m;j=1,2,,n)排成的 m m m n n n列的数表,称为 m × n m \times n m×n矩阵,记为:
A = ( a i j ) m × n A = \left(a_{ij}\right)_{m \times n} A=(aij)m×n
在C++中,我们一般用结构体表示矩阵:

typedef struct {
	int li[101][101], m, n;
} matrix;

2.分类
(1).行矩阵: 1 × n 1 \times n 1×n矩阵
(2).列矩阵: m × 1 m \times 1 m×1矩阵
(3). n n n阶矩阵: n × n n\times n n×n矩阵,记作 A n A_n An
(4).单位矩阵:对角线为1,其余为0的n阶矩阵,记作 E n E_n En
(5).零矩阵:全为0的矩阵,记作 O m × n O_{m \times n} Om×n
二、矩阵运算:
1.加法:
设两个 m × n m \times n m×n矩阵 A , B A, B A,B,则 A + B = ( a i j + b i j ) m × n ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) A + B = \left( a_{ij} + b_{ij}\right)_{m \times n} (i = 1, 2,\cdots,m; j = 1, 2,\cdots ,n) A+B=(aij+bij)m×n(i=1,2,,m;j=1,2,,n)
代码如下:

matrix operator + (matrix a, matrix b) {
    matrix I;
    I.m = a.m, I.n = a.n;
    for (int i = 0; i < a.m; i++)
        for (int j = 0; j < a.n; j++)
            I.li[i][j] = a.li[i][j] + b.li[i][j];
    return I;
}

2.减法:
设两个 m × n m \times n m×n矩阵 A , B A, B A,B,则 A − B = ( a i j − b i j ) m × n ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) A - B = \left( a_{ij} - b_{ij}\right)_{m \times n} (i = 1, 2,\cdots,m; j = 1, 2,\cdots ,n) AB=(aijbij)m×n(i=1,2,,m;j=1,2,,n)
代码如下:

matrix operator - (matrix a, matrix b) {
  matrix I;
  I.m = a.m, I.n = a.n;
  for (int i = 0; i < a.m; i++)
      for (int j = 0; j < a.n; j++)
          I.li[i][j] = a.li[i][j] - b.li[i][j];
  return I;
}

3.数乘:设 m × n m \times n m×n矩阵 A A A,有 λ ∈ R \lambda \in \mathbb {R} λR,则 λ A = ( λ a i j ) m × n ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) \lambda A = \left(\lambda a_{ij}\right)_{m \times n} (i = 1, 2,\cdots,m; j = 1, 2,\cdots ,n) λA=(λaij)m×n(i=1,2,,m;j=1,2,,n)
代码如下:

matrix numMul(int lambda, matrix a) {
    matrix I;
    I.m = a.m, I.n = a.n;
    for (int i = 0; i < a.m; i++)
        for (int j = 0; j < a.n; j++)
            I.li[i][j] = a.li[i][j] * lambda;
    return I;
}

4.矩阵乘法:
设有 m × s m \times s m×s矩阵 A A A s × n s \times n s×n矩阵 B B B,定义 A , B A, B A,B的乘积 C = ( c i j ) m × n C = (c_{ij})_{m \times n} C=(cij)m×n,其中 c i j = ∑ k = 1 s a i k b k j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) c_{ij} = \sum_{k = 1}^sa_{ik}b_{kj}(i = 1, 2,\cdots,m; j = 1, 2,\cdots ,n) cij=k=1saikbkj(i=1,2,,m;j=1,2,,n)记为 C = A B C = AB C=AB,读作 A A A右乘 B B B
代码如下:

#include <cstring>
matrix operator * (matrix a, matrix b) {
  matrix I;
  memset(I.li, 0, sizeof I.li);
  I.m = a.m, I.n = b.n;
  for (int i = 0; i < a.m; i++)
      for (int j = 0; j < b.n; j++)
          for (int k = 0; k < a.n; k++)
              I.li[i][j] += a.li[i][j] * b.li[j][j];
  return I;
}

4.幂运算:
A A A n n n阶矩阵,定义 A A A的正整数幂为:
A 1 = A , A k = A k − 1 A A^1 = A, A^k = A^{k - 1}A A1=AAk=Ak1A
又定义 A 0 = E n A^0 = E_n A0=En
故可以幂运算用矩阵乘法实现,代码如下。

#include <cstring>
matrix pows(matrix a, int n) {
    matrix I;
    I.m = I.n = a.n;
    memset(I.li, 0, sizeof I.li);
    for (int i = 0; i < I.n; i++) I.li[i][i] = 1;
    while (n--) I = I * a;
    return I;
}

亦可用快速幂:

#include <cstring>
matrix pows(matrix a, int n) {
    matrix I;
    I.m = I.n = a.n;
    memset(I.li, 0, sizeof I.li);
    for (int i = 0; i < I.n; i++) I.li[i][i] = 1;
    while (n > 1) {
        if (n & 1) I = I * a;
        n >>= 1, a = a * a;
    }
    return I * a;
}

如果需要取模的话可以进行取模:

#include <cstring>
const int mod = 10000 //此处10000为取模数,可以改变。
matrix operator % (matrix a, matrix b) {
    matrix I;
    memset(I.li, 0, sizeof I.li);
    I.m = a.m, I.n = b.n;
    for (int i = 0; i < a.m; i++)
        for (int j = 0; j < b.n; j++)
            for (int k = 0; k < a.n; k++)
                I.li[i][j] += a.li[i][j] * b.li[j][j] % mod;
    return I;
}

综上,矩阵及运算代码可归为以下代码:

#include <cstring>
typedef struct {
    int li[101][101], m, n;
} matrix;
matrix operator + (matrix a, matrix b) {
    matrix I;
    I.m = a.m, I.n = a.n;
    for (int i = 0; i < a.m; i++)
        for (int j = 0; j < a.n; j++)
            I.li[i][j] = a.li[i][j] + b.li[i][j];
    return I;
}
matrix operator - (matrix a, matrix b) {
    matrix I;
    I.m = a.m, I.n = a.n;
    for (int i = 0; i < a.m; i++)
        for (int j = 0; j < a.n; j++)
            I.li[i][j] = a.li[i][j] - b.li[i][j];
    return I;
}
matrix numMul(int lambda, matrix a) {
    matrix I;
    I.m = a.m, I.n = a.n;
    for (int i = 0; i < a.m; i++)
        for (int j = 0; j < a.n; j++)
            I.li[i][j] = a.li[i][j] * lambda;
    return I;
}
matrix operator * (matrix a, matrix b) {
    matrix I;
    memset(I.li, 0, sizeof I.li);
    I.m = a.m, I.n = b.n;
    for (int i = 0; i < a.m; i++)
        for (int j = 0; j < b.n; j++)
            for (int k = 0; k < a.n; k++)
                I.li[i][j] += a.li[i][j] * b.li[j][j];
    return I;
}
const int mod = 10000 //此处10000为取模数,可以改变。
matrix operator % (matrix a, matrix b) {
      matrix I;
      memset(I.li, 0, sizeof I.li);
      I.m = a.m, I.n = b.n;
      for (int i = 0; i < a.m; i++)
          for (int j = 0; j < b.n; j++)
              for (int k = 0; k < a.n; k++)
	              I.li[i][j] += a.li[i][j] * b.li[j][j] % mod;
      return I;
matrix pows(matrix a, int n) {
    matrix I;
    I.m = I.n = a.n;
    memset(I.li, 0, sizeof I.li);
    for (int i = 0; i < I.n; i++) I.li[i][i] = 1;
    while (n > 1) {
        if (n & 1) I = I * a;
        n >>= 1, a = a * a;
    }
    return I * a;
}
matrix modpows(matrix a, int n) {
    matrix I;
    I.m = I.n = a.n;
    memset(I.li, 0, sizeof I.li);
    for (int i = 0; i < I.n; i++) I.li[i][i] = 1;
    while (n > 1) {
        if (n & 1) I = I % a;
        n >>= 1, a = a % a;
    }
    return I % a;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SZSKszmn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值