K-Means算法简介
K-Means算法是一种广泛使用的聚类算法,旨在将数据集分成K个预定义的簇。每个簇的中心是簇中所有点的均值,称为质心。K-Means算法的目标是最小化每个数据点到其所属簇的质心的距离的平方和。
算法原理
K-Means算法的工作原理可以分为以下几个步骤:
- 初始化: 随机选择K个数据点作为初始质心。
- 分配簇: 将每个数据点分配到距离最近的质心所属的簇。
- 更新质心: 计算每个簇的新质心,质心是簇中所有点的均值。
- 重复: 重复步骤2和3,直到质心不再改变或达到最大迭代次数。
数学公式
假设有 n n n 个数据点 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,…,xn,每个数据点有 d d d个特征。我们需要将这些数据点划分为 K K K个簇。
- 目标函数: K-Means算法的目标是最小化每个数据点到其所属簇质心的距离的平方和,即目标函数 J J J 为:
J = ∑ i = 1 K ∑ x j ∈ S i ∥ x j − μ i ∥ 2 J = \sum_{i=1}^{K} \sum_{x_j \in S_i} \|x_j - \mu_i\|^2 J=i=1∑K