吴恩达《机器学习》作业班
文章平均质量分 81
吴恩达的经典课程《机器学习》是Coursera上的第一门课,也是全球范围内最受欢迎的机器学习课程之一。该课程涵盖了机器学习、数据挖掘和统计模式识别等内容,并且提供了丰富的视频资源和课件。这门课程自推出以来,已经帮助无数初学者掌握了机器学习的基本概念和应用方法
Conan х
这个作者很懒,什么都没留下…
展开
-
深入浅出PCA降维:机器学习中的强大工具
降维是指将高维数据映射到一个较低维度的空间,同时尽量保留原始数据的重要信息。在机器学习中,降维的主要目的是减少数据的特征数目,简化模型的复杂性,提高模型的计算效率,同时帮助我们更好地理解数据的结构。高维数据的挑战维度诅咒:随着数据维度的增加,数据空间会变得极其稀疏,导致机器学习算法难以找到有效的模式。计算复杂度:高维数据通常需要更长的计算时间和更大的内存空间。可视化困难:人类直观地理解三维及以下的数据,对于高于三维的数据,直观理解变得几乎不可能。降维的应用场景数据可视化。原创 2024-08-11 19:33:58 · 1876 阅读 · 0 评论 -
第九天:K-Means算法
K-Means算法是一种简单而有效的聚类方法,但它也有一些缺点,如对初始质心的选择敏感,可能会陷入局部最优解。为了解决这些问题,可以使用多次初始化(K-Means++)等改进方法。通过合理选择K的值和适当的初始质心,K-Means算法可以为数据分析和模式识别提供有效的支持。希望这篇博客能帮助你更好地理解K-Means算法及其应用。如果你有任何问题或建议,请随时联系我!原创 2024-08-08 09:22:28 · 1109 阅读 · 0 评论 -
第八天:机器学习:支持向量机SVM
支持向量机是一种强大的分类算法,通过最大化间隔来提高分类性能。SVM 的理论基础包括超平面、间隔最大化和软间隔等概念。通过实际的 Python 代码实现,我们可以可视化 SVM 的决策边界,帮助理解其工作原理。希望本文对你理解 SVM 有所帮助。如果有任何问题或需要进一步的讨论,请随时联系我!原创 2024-08-08 09:15:43 · 1959 阅读 · 0 评论 -
第八天:机器学习基础:交叉验证、偏差、方差、正则化以及精确度与召回率
交叉验证是一种常用的模型评估方法。sumlen。原创 2024-08-08 09:09:42 · 834 阅读 · 0 评论 -
第七天:机器学习:神经网络-正向传播算法
输入层:接受原始数据输入,通常不进行计算,只是简单地传递数据。隐藏层:包含多个神经元,对输入数据进行复杂的特征提取和处理。隐藏层可以有多层,这使得神经网络具备强大的学习能力。输出层:将最后一层隐藏层的输出进行处理,生成最终的预测结果。正向传播是神经网络中的基本过程,通过将输入数据逐层传递和计算,最终得到输出结果。激活函数在正向传播中起到了关键作用,使神经网络能够学习和表达复杂的非线性关系。通过理解和实现正向传播算法,初学者可以深入理解神经网络的工作原理,为进一步学习和应用打下坚实基础。原创 2024-08-03 02:22:41 · 801 阅读 · 0 评论 -
第七天:机器学习:神经网络-反向传播算法
梯度下降是一种优化算法,用于通过最小化损失函数来更新神经网络的参数。随机梯度下降(SGD):每次使用一个样本进行梯度更新。批量梯度下降(Batch Gradient Descent):每次使用整个训练集进行梯度更新。小批量梯度下降(Mini-Batch Gradient Descent):每次使用一部分训练集进行梯度更新。Adam优化算法:结合了动量和自适应学习率的方法。反向传播是神经网络训练中的核心算法,它通过计算误差梯度来调整神经网络的权重和偏置,从而逐步优化模型性能。原创 2024-08-03 02:20:31 · 1106 阅读 · 0 评论 -
第六天:机器学习:神经网络
通过上述介绍,我们了解了神经网络的基本结构和工作原理,包括神经元、权重、层、前向传播、反向传播、激活函数、训练过程及正则化方法。神经网络在实际应用中的重要性不断提升,是机器学习研究和应用的重要方向。原创 2024-08-02 17:28:58 · 856 阅读 · 0 评论 -
第五天:机器学习中的正则化:防止过拟合的艺术
在机器学习中,我们经常面临过拟合的问题,即模型在训练数据上表现良好,但在未见过的数据上表现不佳。正则化是一种减少过拟合风险的技术,通过在模型的损失函数中添加一个额外的项来实现。原创 2024-08-02 16:45:53 · 1044 阅读 · 0 评论 -
第四天:逻辑回归:机器学习中的分类利器
逻辑回归是一种预测二元结果的统计方法。它通过使用逻辑函数将线性回归的输出映射到0和1之间,从而预测事件发生的概率。原创 2024-08-02 16:32:51 · 1111 阅读 · 0 评论 -
第三天:多元线性回归
多元线性回归是一种统计方法,用于分析两个或两个以上自变量(解释变量)与一个因变量(响应变量)之间的线性关系。其一般形式可以表示为: y=β0+β1x1+β2x2+…+βnxn+ϵy=β0+β1x1+β2x2+…+βnxn+ϵ 其中,yy 是因变量,x1,x2,…,xnx1,x2,…,xn 是自变量,β0,β1,…,βnβ0,β1,…,βn 是模型参数,而 ϵϵ 是误差项。原创 2024-07-31 10:59:09 · 518 阅读 · 0 评论 -
第二天:单变量线性回归
单变量线性回归是一种基本的预测模型,它通过分析一个自变量(X)和一个因变量(Y)之间的线性关系,来预测未来的值。这种关系可以用以下的线性方程表示: y=β0+β1xy=β0+β1x单变量线性回归是理解机器学习基本概念的一个很好的起点。通过这个模型,我们可以开始探索数据之间的关系,并为更复杂的机器学习算法打下基础。原创 2024-07-31 10:54:12 · 338 阅读 · 0 评论 -
第一天:机器学习:初识机器学习
配置环境,以及安装anaconda后启动Jupyter。原创 2024-07-31 10:07:50 · 255 阅读 · 0 评论