第八天:机器学习:支持向量机SVM

支持向量机 (SVM) 详解

支持向量机(Support Vector Machine, SVM)是一种常用的监督学习模型,主要用于分类和回归任务。SVM 的核心思想是找到一个最优的超平面来分隔不同类别的数据点。本文将详细介绍 SVM 的基本原理、数学公式、代码实现以及如何通过代码绘制原理图。
在这里插入图片描述

1. SVM 基本原理

SVM 的目标是找到一个能够最大化类别间隔的超平面,从而使得分类准确率达到最优。假设我们有一个二分类问题,数据点 ( x i , y i ) (x_i, y_i) (xi,yi),其中 x i x_i xi 是特征向量, y i y_i yi 是类别标签( y i ∈ { − 1 , 1 } y_i \in \{-1, 1\} yi{1,1})。SVM 的目标是找到一个超平面 w T x + b = 0 w^T x + b = 0 wTx+b=0,使得类别之间的间隔最大。

1.1 超平面与分类

在二维空间中,超平面实际上是一个直线。对于 SVM 来说,分类的目标是找到一个直线,使得不同类别的样本点被分隔开,并且尽量使得距离直线最近的点距离最大。这个距离称为间隔(margin),我们希望最大化这个间隔。

1.2 最大化间隔

给定超平面 w T x + b = 0 w^T x + b = 0 wTx+b=0,其中 w w w 是权重向量, b b b 是偏置项。为了最大化间隔,我们需要确保:

  • 对于正类样本( y i = 1 y_i = 1 yi=1), w T x i + b ≥ 1 w^T x_i + b \geq 1 wTxi+b1
  • 对于负类样本( y i = − 1 y_i = -1 yi=1), w T x i + b ≤ − 1 w^T x_i + b \leq -1 wTxi+b1

这样,间隔可以被计算为:

间隔 = 2 ∥ w ∥ \text{间隔} = \frac{2}{\|w\|} 间隔=w2

因此,最大化间隔等价于最小化 ∥ w ∥ \|w\| w 的平方:

min ⁡ 1 2 ∥ w ∥ 2 \min \frac{1}{2} \|w\|^2 min21w2

同时需要满足分类约束:

y i ( w T x i + b ) ≥ 1 y_i (w^T x_i + b) \geq 1 yi(wTxi+b)1

1.3 软间隔与硬间隔

在实际应用中,数据可能不是线性可分的,因此我们引入了软间隔(soft margin)。通过引入松弛变量 ξ i \xi_i ξi 和惩罚参数 C C C,我们可以在一定程度上允许分类错误,从而优化分类结果。目标函数变为:

min ⁡ 1 2 ∥ w ∥ 2 + C ∑ i = 1 n ξ i \min \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i min21w2+Ci=1nξi

同时需要满足:

y i ( w T x i + b ) ≥ 1 − ξ i y_i (w^T x_i + b) \geq 1 - \xi_i yi(wTxi+b)1ξi

2. 数学公式与优化问题

SVM 的优化问题可以通过拉格朗日对偶方法来求解。构造拉格朗日函数:

L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 n α i [ y i ( w T x i + b ) − 1 ] \mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i [y_i (w^T x_i + b) - 1] L(w,b,α)=21w2i=1nαi[yi(wTxi+b)1]

其中, α i \alpha_i αi 是拉格朗日乘子。优化目标是最大化对偶函数:

max ⁡ α [ ∑ i = 1 n α i − 1 2 ∑ i = 1 n ∑ j = 1 n α i α j y i y j ( x i T x j ) ] \max_{\alpha} \left[ \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j (x_i^T x_j) \right] αmax[i=1nαi21i=1nj=1nαiαjyiyj(xiTxj)]

约束条件为:

α i ≥ 0 \alpha_i \geq 0 αi0
∑ i = 1 n α i y i = 0 \sum_{i=1}^n \alpha_i y_i = 0 i=1nαiyi=0

3. Python 实现与示例

我们使用 scikit-learn 库来实现 SVM。以下是一个简单的例子:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline

# 生成示例数据
np.random.seed(0)
X, y = datasets.make_blobs(n_samples=50, centers=2, cluster_std=0.60, random_state=0)

# 标准化数据
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 训练 SVM 模型
model = SVC(kernel='linear', C=1.0)
model.fit(X, y)

# 绘制决策边界
def plot_decision_boundary(model, X, y):
    h = .02  # 网格点的步长
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    
    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    
    plt.contourf(xx, yy, Z, alpha=0.8)
    plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k', marker='o')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.title('SVM Decision Boundary')
    plt.show()

plot_decision_boundary(model, X, y)

上述代码生成了一个简单的二维数据集,并使用线性 SVM 对数据进行分类。plot_decision_boundary 函数用于绘制决策边界。
在这里插入图片描述

4. 原理图

我们可以通过代码绘制 SVM 的原理图,帮助理解超平面及其间隔:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_classification

# 生成数据
X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1)

# 训练 SVM 模型
clf = SVC(kernel='linear', C=1.0)
clf.fit(X, y)

# 绘制决策边界
def plot_svm_decision_boundary(clf, X, y):
    plt.figure(figsize=(10, 6))
    plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

    # 绘制超平面
    ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()

    xx = np.linspace(xlim[0], xlim[1], 100)
    yy = np.linspace(ylim[0], ylim[1], 100)
    XX, YY = np.meshgrid(xx, yy)
    Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
    Z = Z.reshape(XX.shape)

    ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])
    plt.title('SVM Decision Boundary')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.show()

plot_svm_decision_boundary(clf, X, y)

在这里插入图片描述

上面的代码会生成 SVM 的决策边界图,其中包含分类超平面和支持向量。决策边界帮助我们理解模型如何在特征空间中划分不同的类别。

总结

支持向量机是一种强大的分类算法,通过最大化间隔来提高分类性能。SVM 的理论基础包括超平面、间隔最大化和软间隔等概念。通过实际的 Python 代码实现,我们可以可视化 SVM 的决策边界,帮助理解其工作原理。

希望本文对你理解 SVM 有所帮助。如果有任何问题或需要进一步的讨论,请随时联系我!

  • 17
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值