第一章
三角形
有N根棍子,棍子第i的长度为Ai,想要从中选出三根棍子组成周长尽可能长的三角形,请输出最大的周长,若无法组成,请输出0。(数组有序)
- 若存在结果,则三根长度定相邻。
public class Main {
public static int process(int[] arr) {
int res = 0;
for (int i = 0; i <= arr.length - 3; i++) {
if (arr[i] + arr[i + 1] > arr[i + 2] && arr[i + 2] - arr[i + 1] < arr[i]) {
res = Math.max(res, arr[i] + arr[i + 1] + arr[i + 2]);
}
}
return res;
}
}
INTS
M只蚂蚁以每秒一厘米的速度在长为N的杆子上爬行,当蚂蚁爬到杆子的端点是会自动掉落,由于杆子太细,两只蚂蚁相遇时,他们不能交错通过,只能各自反向爬回去,对于每只蚂蚁,我们知道它的距离,杆子左端的距离,X2,但不知道它向前的朝向,请计算所有蚂蚁下落的杆子所需要的最短时间和最长时间。
- 无视蚂蚁的区别相遇后认为保持原样交错而过。
public class Main {
public static int[] process(int[] arr, int N) {
int min = Integer.MAX_VALUE, max = 0;
for (int value : arr) {
min = Math.min(min, Math.min(value, N - value));
max = Math.max(max, Math.max(value, N - value));
}
return new int[]{min, max};
}
}
第二章
广搜迷宫
给定数组maze,. 表示通路,给定起始点和结束点横纵坐标,返回从起始点到终点的最近距离。
public class Main {
static int[] dx = {1, 0, -1, 0};
static int[] dy = {0, 1, 0, -1};
public static int process(int[][] maze, int startX, int startY, int endX, int endY) {
int M = maze.length;
int N = maze[0].length;
int[][] lenMaze = new int[N][M];
for (int i = 0; i < M; i++) {
Arrays.fill(lenMaze[i], Integer.MAX_VALUE);
}
ArrayDeque<Node> deque = new ArrayDeque<>();
deque.push(new Node(startX, startY));
lenMaze[startX][startY] = 0;
while (!deque.isEmpty()) {
Node node = deque.poll();
if (node.x == startX && node.y == startY) {
break;
}
for (int i = 0; i < 4; i++) {
Node n = new Node(node.x + dx[i], node.y + dy[i]);
if (n.x >= 0 && n.x < M && n.y >= 0 && n.y < N && lenMaze[n.x][n.y] == Integer.MAX_VALUE && maze[n.x][n.y] == '.') {
deque.push(n);
lenMaze[n.x][n.y] = lenMaze[node.x][node.y] + 1;
}
}
}
return lenMaze[endX][endY];
}
static class Node {
int x;
int y;
Node(int x, int y) {
this.x = x;
this.y = y;
}
}
}
Saruman’s Army
直线上有N个点,点i 的位置为Xi,从这N个点中,选择若干个给他们加上标记,对于每一个点其距离为R的距离,区域内必须有带标记的点,自身带有标记的点,可以认为与其距离为0的地方有一个带有标记的点,在满足这个条件的情况下,希望能为尽可能少的点添加标记,请问至少要添加多少被标记的点。
public class Main {
public static int process(int[] arr, int R) {
int num = 0, i = 0;
while (i < arr.length) {
int s = arr[i++];
while (i < arr.length && arr[i] <= s + R) i++;
int mid = arr[i - 1];
while (i < arr.length && arr[i] <= mid + R) i++;
num++;
}
return num;
}
}
背包问题
经典01
public class Main {
public static int process(int[] weights, int[] values, int maxBag) {
int[][] dp = new int[weights.length + 1][maxBag + 1];
for (int i = 0; i < weights.length; i++) {
for (int j = 0; j <= maxBag; i++) {
if (j < weights[i]) {
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = Math.max(dp[i][j], dp[i][j - weights[i]] + values[i]);
}
}
}
return dp[weights.length][maxBag];
}
}
空间压缩01正填
public class Main {
public static int process(int[] weights, int[] values, int maxBag) {
int[][] dp = new int[2][maxBag + 1];
for (int i = 0; i < weights.length; i++) {
for (int j = 0; j <= maxBag; j++) {
if (j < weights[i]) {
dp[(i + 1) & 1][j] = dp[i & 1][j];
} else {
dp[(i + 1)][j] = Math.max(dp[i & 1][j], dp[i & 1][j - weights[i]] + values[i]);
}
}
}
return dp[weights.length&1][maxBag];
}
}
空间压缩01反填
public class Main {
public static int process(int[] weights, int[] values, int maxBag) {
int[] dp = new int[maxBag + 1];
for (int i = 0; i < weights.length; i++) {
for (int j = maxBag; j >= weights[i]; j++) {
dp[j] = Math.max(dp[j], dp[j - weights[i]] + values[i]);
}
}
return dp[maxBag];
}
}
经典完全
public class Main {
public static int process(int[] weights, int[] values, int maxBag) {
int[][] dp = new int[weights.length + 1][maxBag + 1];
for (int i = 0; i < weights.length; i++) {
for (int j = 0; j <= maxBag; j++) {
for (int k = 0; k * weights[i] <= j; k++) {
dp[i + 1][j] = Math.max(dp[i + 1][j], dp[i][j - weights[i] * k] + weights[i] * k);
}
}
}
return dp[weights.length][maxBag];
}
}
压缩完全背包
public class Main {
public static int process(int[] weights, int[] values, int maxBag) {
int[] dp = new int[maxBag + 1];
for (int i = 0; i < weights.length; i++) {
for (int j = weights[i]; j <=maxBag; j++) {
dp[j] = Math.max(dp[j], dp[j - weights[i]] + values[i]);
}
}
return dp[maxBag];
}
}
最长上升子序列
动态规划
public class Main {
public static int process(int[] arr) {
int[] dp = new int[arr.length];
int res = 1;
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
dp[i] = 1;
if (dp[j] < dp[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
res = Math.max(res, dp[i]);
}
return res;
}
}
最优解
public class Main {
/**
* 之前我们取的是直接存储某位置之前所存在的最长序列的个数,时间复杂度为O(N^2)
* 该种方法,我们可以了解到,当前面的值有存在序列最长值大于等于其他值,并且该值较小
* 那么比该值大且前面的子序列个数还较少,这些值就不可能成为我们的最终选的结果。
*
* 我们现在选择一种方式,就是抛弃上述过程中存在的这些值,用下标位置索引表示当前的子序列长度。复杂度O(N*logN)
* 就像indexIsMaxNumArr[maxNumIndex]表示:
* 前面存在最长子序列长度为maxNumIndex时,满足该条件下的最小值为indexIsMaxNumArr[maxNumIndex]
*/
public static int process(int[] arr) {
if (arr == null || arr.length == 0) {
return 0;
}
int[] indexIsMaxNumArr = new int[arr.length];
int maxNumIndex = -1;// 存在最长长度索引
for (int value : arr) {
if (maxNumIndex == -1 || indexIsMaxNumArr[maxNumIndex] < value) {
// 之前不存在值或者该值大于之前所有值,此时肯定比之前最长索引大1,所以maxNumIndex加上1
indexIsMaxNumArr[++maxNumIndex] = value;
} else {
// 查找indexIsMaxNumArr[0…………maxNumIndex]范围中,值大于或等于value的最小值索引。
int index = biggerThanValueLeftestIndex(indexIsMaxNumArr, value, maxNumIndex);
// 更新该值
indexIsMaxNumArr[index] = value;
}
}
return maxNumIndex + 1;
}
/**
* 该函数在查找时总结过
*
* @param indexIsMaxNumArr 数组
* @param value 目标值
* @param right 右端索引
* @return 值大于或等于value的最小值索引
*/
private static int biggerThanValueLeftestIndex(int[] indexIsMaxNumArr, int value, int right) {
int left = 0;
while (left < right) {
int med = ((right - left) >> 1) + left;
if (indexIsMaxNumArr[med] == value) {
return med;
} else if (indexIsMaxNumArr[med] > value) {
right = med;
} else {
left = med + 1;
}
}
return right;
}
}
Expedition
你需要驾驶一辆卡车,行驶L单位距离,最开始时,卡车上有一个P单位的汽油,每开一单位长度距离需要消耗一单位的汽油,如果在途中上汽油的汽油消耗完卡车就无法继续前行,因而无法到达终点,在途中一共有N个加油站,第i个加油站在是locations[ i ]单位距离的地方,最多可以给卡车加num[ i ]单位汽油,假设卡车的燃料箱无限大,装多少油都没有问题,那么请问卡车是否能达到终点?如果可以的用点输出最少加油次数,否则输出-1。
public class Main {
public static int process(int[] locations, int[] num, int P, int L) {
int thisL = P;
PriorityQueue<Integer> queue = new PriorityQueue<>((o1, o2) -> o2-o1);
int index = 0, res = 0;
while (thisL < L) {
while (index < locations.length && locations[index] <= thisL) {
queue.add(num[index++]);
}
if (queue.isEmpty()) return -1;
thisL += queue.poll();
res++;
}
return res;
}
}