2025开年,DeepSeek如同两年前的ChatGPT一样,成为了全球焦点,但这次不一样的在于,如果说ChatGPT让我们看到了AGI的曙光,那么DeepSeek则让每一个人实实在在感受到了它的价值,也因此,AI在各行各业的落地像是开了加速器。
作为国内头部人力资源厂商的易路人力资源科技,得益长期服务于全球800万职场终端用户而对AI在企业内部的推进落地有着一手的数据及深刻感知,继2023 年发布《AI 在企业人力资源中的应用白皮书1.0》后,2025年初,易路联合HR数智研究院共同发起专项调研,并撰稿发布《AI在企业人力资源中的应用白皮书2.0》。
在《AI应用白皮书2.0》中,易路从专家视角对企业的AI落地实践给出了诸多成熟的建议。
对于企业管理者、尤其是人力资源业务的管理者,应该采取什么样的策略、建立什么样的能力,才能迎接并领导这样一个深刻改变管理模式、组织模式、工作模式的巨大变革?
易路专家组在白皮书中提出,领导者同时提升个人与组织借助数字化能力、融合人工智能技术的能力,二者缺一不可,而这项核心能力,我们称之为“数智能力”。
数智能力,推进AI应用落地的核心力
所谓数智能力(Individual Digital - Intelligence Competencies),是指在数字能力基础上融合人工智能相关元素的综合能力,是在工作、学习和生活场景中,能有效利用包括人工智能在内的数字技术,进行高效工作、创造性解决复杂问题、精准交流、智能管理信息、深度协作、创新地创建和分享内容,以及有策略构建知识的一系列技能、态度和行为的集合。
从其定义不难看出,数智能力不仅涵盖数字技术操作技能和人工智能应用能力,还包括对数字化和智能化相关的知识、价值观、态度、伦理和法规的深刻理解与遵循。
从个人层面看,数智能力关注个体在个人和职业生活中使用数字技术的技能、知识和态度。具体而言,个体尤其是管理者,需要对当下的数字化技术、AI 技术如大语言模型、生成式人工智能、AI Agent 等技术和相关应用,有概念性和框架性理解,了解它们的基本原理,熟悉它们应用的场景及作用和价值,同时理解AI 应用中可能存在的潜在风险和问题如隐私、偏见等与伦理道德相关问题。
从组织层面看,数智能力则是指组织在各个业务层面和组织中,使用以AI 为核心的数智技术的能力,主要包括以下内容:
- 数智化转型: 组织采用数字技术进行变革的能力,
- 数智战略: 组织制定和执行数字战略的能力,
- 数智文化: 组织内部对数字技术的态度和行为,
- 数智技能: 组织内部人员的数字能力水平,
- 数智基础设施: 支持AI 为核心的数字技术的组织基础设施,
- 数智流程: 使用数字技术进行业务流程优化和重构的能力,
- 数智合作: 组织与外部合作伙伴进行数字合作的能力。
但归根结底,无论是个体还是组织的能力,可以说皆出自戴维 · 尤里奇早年提出的人力资源管理者四角色模型以及胜任力模型在AI 时代下的迭代、延展和重新诠释。
以HR 胜任力模型中“调动信息资源(Mobilizes information)”的能力为例,该能力是指HR 抓取、分析数据并依据数据和技术解决问题、影响策略的能力。随着AI 技术的持续发展与融合,在要求HR 懂得“调动信息资源”的同时,更要具备根据业务需求掌握和使用AI 技术的能力,即上述提及的数智能力。
在四角色模型中,无论是作为战略伙伴、员工支持者、还是变革推动者,尤其是作为效率专家,更要求HR 管理者,充分理解和把握在组织中,根据企业战略执行要求,选择合适的业务场景,推进和使用提升管理效率、增强管理效能、优化员工体验的AI 应用。
业务、战略&体验:HR角色演变下的AI落地视角
作为管理者,尤其是人力资源管理者,我们在提升个人自身数智能力的同时,还需上下兼顾,即分别从承接企业战略和员工体验(尤其是数字化体验)两个角度,判断和选择哪些业务场景、业务流程、工作内容适合或应该使用AI 相关技术或应用,同时还需确保这些AI 应用成熟且得到验证。
需注意的是,随着HR 在企业中职能角色的演变,逐步由行政管理、职能管理到战略参与,再到由外而内、业务驱动下的人力资源前瞻性引领。AI 的选择和使用不能仅单纯从HR 业务本身的效率和效能出发,更需要对齐或配称业务战略和执行落地对人力资源的要求,也要考虑数字时代的员工体验。
以下为人力资源角色演变不同阶段的业务重点:
- 行政管理阶段:人力资源业务的最基础层次,涉及日常人事行政事务管理,如员工档案管理、劳动合同签订等;
- 职能管理阶段:即大家熟悉的人力资源六大模块,分别为人力资源规划、招聘与配置、培训与开发、绩效管理、薪酬福利管理以及劳动关系管理;
- 战略管理阶段:该阶段关注内部系统化建设,将人力资源管理的战略、企业短期目标以及长期发展战略相结合,借由AI 应用辅助战略目标实现,例如人员培训、企业文化建设与推广、企业未来领导人培养(继任计划)等;
- 由外向内管理阶段:该阶段侧重外部系统化建设,更关注AI 应用的业务转化能力与效果,即从客户和市场需求出发,看内部业务对人力资源管理的要求,从而创造外部客户价值。
根据Gartner 的一项研究显示,AI 在企业内部更高价值的实现一方面取决于任务的复杂程度,另一方面则依赖于员工的实践经验。
当HR 的职能角色上升到外部视角及业务驱动的价值创造,而AI 又恰逢其时,承担大部分事务型、决策辅助工作,HR 的重心自然要转到为企业业务目标实现的核心主体—员工,创造更适宜的工作环境,以最终实现业务、人力资源战略和员工的三方共赢。
多层级AI应用能力:卓越数智能力的核心构成
尽管具备数智能力是AI 时代下对每个人的要求,但显然,要求普通一线员工一蹴而就、习得数字化领导力并不合理;相反的,要求高层管理者事无巨细、学习基础业务层如何运转也完全没有必要。因此,卓越的数智能力应是多层级的,例如:
- 基层员工:使用个人AI 工具,提升工作效率如AIGC 工具完成文案编写和图片创意等、AI 辅助数据分析、AI会议助手(会议安排、总结、语音或文字翻译),以及使用企业部署的各种AI 相关应用(参见中层管理者)等;
- 中层管理:落实和实施相关业务场景和流程的AI 应用落地,从而提升业务效率和效能,例如简历智能筛选、AI 面试、员工服务问答机器人、AI 辅助薪酬核算和定岗定薪、AI 辅助绩效沟通、AI 辅助培训赋能、AI 辅助人才画像和匹配,等等;
- 高层管理:从战略层面领导和推进企业以AI 为核心的数字化转型、企业层面的AI 大模型等应用的推广,并关注AI 使用中的伦理道德准则,同时不断提升自身和团队的数字化领导力。
明确目标:不迷失不踩坑,科技向善、以人为本
当我们作为组织管理者,建立起以AI 为核心的数智能力后,就有能力在企业推进AI 应用的过程中避免踩坑:
- 避坑1:AI 应用与业务价值脱钩。推进AI 应用应避免为了技术而技术,尤其是技术人员主导的AI 应用的推广和实施,并未和企业的整体人力资源战略和重点需要提升的领域达成对齐和一致。例如某些企业,在招聘需求不大甚至下滑的情况下,仅因为招聘类AI 技术相对成熟就盲目推进,这在具备数智能力的企业组织内是可以避免的;
- 避坑2:未明确业务场景的AI 相关投资。在没有明确业务场景和用户用例的情况下,技术部门进行AI 及数据方面的基础设施的投资,美其名曰训练企业业务数据做适当准备,但其实可能浪费大量资源;
- 避坑3:内部缺乏既懂业务又懂AI 的人才,盲目推进。一方面是焦虑在蔓延,另一方面是似是而非的夸大和误导AI 应用如何结合实际业务创造真正价值。此时,如果没有懂业务、懂AI 的专业人才,很难有效有序地推进AI 落地。
除此之外,缺乏整体规划和考虑,AI 技术应用和实施后的持续维护和升级,无论是技术本身,还是数据的持续迭代更新,都需要有专门的团队和流程加以维护升级。
更重要的是,AI 应用推广使用后,需注意在公平性、员工敬业度、士气、隐私合规性等方面对员工的影响,此时需要发挥人力资源管理者的作用,才能真正做到技术提高效率、提升管理效能的同时,保持科技向善,以人为本。
对齐企业战略:有序推进、持续优化
AI 愿景:AI 愿景确立应以如何帮助达成企业人力资源管理的战略目标为目标,例如:
- 公司最重要和急迫的战略和目标是什么?对应的人力资源管理战略及核心诉求是什么(如人才保留、绩效优化、招聘效率、员工体验、人才发展、薪酬激励、组织效能等等);
- 目前人力资源管理中,哪些工作、哪些业务、哪些相关流程迟滞和阻碍了以上战略和目标的达成,做到真正的“痛点和卡点驱动”,包括但不限于相关HR 职能板块在以下方面的问题:
- 哪些工作需要提效、业务流程效率提升?
- 员工数字化体验如何落地并持续优化?
- 如何通过人员替代达成人效提升成本降低?
- 智能化数据分析达成辅助决策,提升决策质量和效率?
AI 业务场景用例包括:
- 战略重点分解下的关键岗位工作、核心业务流程;
- AI 应用赋能、支持、替代、重构工作内容和关键业务流程;
- 清晰化具体业务场景用例,分析和计算AI 达成价值;
- 相关行业领先企业的AI 应用借鉴等。
企业推进AI 应用落地并持续优化过程中,所需要内外部能力及影响因子,如:
- 数据基础,
- 技术能力,
- 资金预算,
- 人才,
- 组织和团队,
- 外部供应商管理(自研vs 外采),
- 企业技术文化等。
具体执行:根据选定的具体业务场景,制定详细的AI 应用推进计划,包括:
- 目标、时间表、资源、供应商选择、项目实施、项目评价、持续维护计划等等;
- HR 数智能力迭代、员工培训和宣贯、跨部门协作(HR、IT、业务部门等);
效果评估与持续优化:
- 量化价值指标,如招聘周期缩短比例、培训成本下降、员工敬业度及流失率、绩效业绩、人效成本等等;
- 定性主观反馈指标,如员工尤其是管理层AI 接受度、使用度及依赖度。
如图所示,当前人力资源各业务场景的AI“参与度” 极高,已经覆盖了招聘全流程,对员工入职、在职阶段的业务需求覆盖率也已经达到70% 左右,对于有计划尝试或加深AI 应用的企业来说,以下HR+AI 场景的应用商业化成熟度高,可优先考虑引入。
负责任的AI应用:HR管理者的责任
毋庸讳言,由于算法本身内在逻辑、历史数据的局限性等,部分AI 的应用难免造成对员工的不公平、歧视、待遇偏见等。例如招聘简历智能筛选中,往往预先设置年龄、性别、婚姻、生育等标签,这种具有歧视性的算法逻辑不仅影响结果公正性,而且过程隐蔽。
鉴于此,企业在推进AI 应用落地时,需要企业管理者,尤其是HR 管理者,在AI 应用和使用过程中,有意识、有勇气、有预见地建立制度规范和文化,以确保构建起“负责任的AI 应用”,例如适时建立AI 伦理审核小组,通过定期审核AI 使用中的算法逻辑和数据等举措,确保AI 应用在法律上合规、道德上合情。
以下列举常用的AI 应用治理机制:
- 设立AI 伦理委员会:设立专门的AI 伦理委员会,定期审查AI 系统的算法和数据使用方式,确保系统输出的公平性和准确性;
- 责任和问责机制:在AI 系统出现错误或导致损害时,应有明确机制用于定责定损并予以有效补救措施;
- 建立以人为本的文化:在AI 工作场所中建立开放、包容和透明的文化,鼓励员工大胆提出批评或质疑AI 错误,保障工作中“以人为中心”的准则不变。
负责任的人工智能模型(Responsible AI model)是指在开发、设计和部署AI 系统时,确保其符合道德、透明、可解释、公平、安全和隐私保护等原则的实践。负责任的人工智能旨在最小化潜在的负面影响,同时最大化对社会的积极贡献:
- 公平性:确保AI 系统在不同群体中表现一致,避免偏见和歧视。这包括在数据收集、模型训练和决策过程中识别和缓解偏见;
- 透明度:确保AI 系统的决策过程和结果是可解释的,使利益相关者能够理解AI 如何做出决策。这可以通过使用可解释的AI(XAI)技术来实现;
- 隐私和安全性:保护用户数据的隐私,确保AI 系统的安全性,防止数据泄露和网络攻击。这包括实施严格的数据保护措施和安全协议;
- 可问责性:确保AI 系统的开发者和使用者对其行为负责。这包括建立明确的责任机制,确保决策过程的透明度和可追溯性;
- 可解释性:使AI 系统的决策过程和结果对用户和利益相关者透明,以便他们能够理解AI 如何做出决策。这有助于建立对AI 系统的信任;
- 法律法规遵从:确保AI 系统符合相关法律法规的要求,避免法律风险。这包括遵守数据保护法规、隐私法规和行业标准。
诚如历史上各种新技术的产生与发展,人们往往会在短期内高估它的作用与影响,但可以确认的是,但我们从更长期的视角来看时,又通常会低估它的价值。这个结论和判断用在当前AI 技术产生与发展现状上尤为贴切。
特别是从长远来看,因为从来没有哪一项技术像AI 一样,不仅部分替代人、而且还有可能全部替代人的决策和判断。这令我们很难避免错判AI 对工作方式、组织方式、管理方式带来的颠覆性影响(本质上是想象不出来)。
鉴于上述种种,企业领导者更加需要持续推动构建并持续提升数智能力,但在大力推广AI 技术和应用之余,我们还应始终清醒鉴定地铭记一个准则:科技向善,方能向强。正如德国存在主义哲学家卡尔·西奥多·雅斯贝尔斯所言:“技术仅是一种手段,它本身并无善恶,一切取决于人从中造出什么,它为什么目的而服务于人,人将置于什么条件下” 。
关于易路
作为国内HR SaaS厂商的领军企业,易路自2004年成立以来,面向全球中大型企业,坚持科技赋能人力资源,提供以薪酬为核心的一站式人力资源软件及服务。基于对企业需求的深刻洞察及20年的行业深耕、技术积累,易路开创了数字化交付的服务形式,并推出行业首个AI Agent平台-iBuilder。
易路People+是为中大型企业打造的以薪酬为核心的一站式人力资源软件平台,将全球用户的先进管理理念与实践总结融合至标准化的SaaS平台,覆盖企业人力资源全业务场景,从招聘管理、数字化入职、核心人力、劳动力管理、薪酬管理、佣金激励到持续绩效、人才发展、员工培训、数据洞察全场景。以一站式、标准化重塑企业人力资源全业务流程,提升组织管理与变革能力,打造高能效组织。
截至目前,易路的服务地域范围也已扩展至全球180+国家与地区、480+城市,为充分保障企业在全球运营中的数据安全及合规,易路早已通过美国注册会计师协会(AICPA)制定的审计标准,成功获得SOC1、SOC2、SOC3认证,并由安永出具相应数据安全审计报告,具备最高专业级别数据安全保障。