BLUE 评价指标

BLEU:用于机器翻译任务的评价。根据n-gram可以划分为多个评价指标。常见的有BLUE-1、BLUE-2、BLUE-3、BLUE-4四种,其中的数字表示连续单词的个数。BLUE-1衡量的是单词级别的准确性,高阶BLUE可以衡量句子的流畅性。

BLUE通常用来衡量一组机器产生的翻译句子集合 (candidates) 与一组人工翻译句子 (references) 的相似程度。

示例如下:

candidate: The cat sat on the mat.
reference: The cat is on the mat.
  • BLUE-1

candidate {the, cat, sat, on, the, mat} 中有5个在 reference 中,即 blue1=5/6=0.83

  • BLUE-2

candidate {the cat, cat sat, sat on, on the, the mat} 中有3个在 reference 中,即 blue2=3/5=0.6

  • BLUE-3

candidate {the cat sat, cat sat on, sat on the, on the mat} 中有1个在 reference 中,即 blue3=1/4=0.25

  • BLUE-4

candidate {the cat sat on, cat sat on the, sat on the mat}中有0个在 reference 中,即 blue4=0/3=0

### 图像去雾质量评估方法 对于图像去雾的效果评估,主要采用两种类型的指标:主观评价和客观评价。 #### 主观评价 主观评价依赖于人类观察者的感知判断。这类评价通常通过问卷调查的方式进行,邀请多名参与者对同一组经过不同算法处理后的图像样本打分。尽管这种方法能够反映真实用户的感受,但由于其高度依赖个人偏好,因此存在一定的主观性和不稳定性[^1]。 #### 客观评价 为了克服主观评价的局限性,研究人员开发了一系列量化指标来衡量去雾前后图像的质量变化。常用的客观评价标准如下: - **PSNR (Peak Signal-to-Noise Ratio)** 峰值信噪比是一个广泛使用的图像保真度测量参数,反映了重建图像与原始无噪声图像之间的差异程度。较高的 PSNR 表明更好的图像还原能力。 - **SSIM (Structural Similarity Index Measure)** 结构相似性指数不仅考虑像素级别的误差,还关注图像的整体结构特征匹配情况。相比 PSNR 更贴近人的视觉体验,在实际应用中有更高的参考价值。 - **UIQ (Universal Image Quality Index)** 统一图像质量指数综合考量亮度、对比度及结构信息的一致性,适用于多种场景下的图像质量评测。 - **FSIM (Feature-based Structural Similarity)** 特征基底结构性相似度引入了边缘保持特性作为额外维度,特别适合检测细节保留状况良好的去雾结果。 除了上述传统指标外,针对特定应用场景还可以设计其他专用评分体系,比如色彩逼真度、清晰度提升比例等特殊属性。 ### 可视化工具推荐 对于以上提到的各项评价指标的具体数值展示及其直观理解,建议使用 Python 生态中的 Matplotlib 和 Seaborn 库来进行图表绘制工作。以下是简单的代码片段示范如何利用这两个库实现 SSIM 的计算并绘制成柱状图形式呈现给用户查看: ```python import cv2 from skimage.metrics import structural_similarity as ssim import matplotlib.pyplot as plt import numpy as np def calculate_ssim(imageA, imageB): score, diff = ssim(imageA, imageB, full=True) return score original_image = cv2.imread('path_to_original.jpg',0) # 加载原图 dehazed_image = cv2.imread('path_to_dehazed.jpg',0) # 加载去雾后图片 ssim_score = round(calculate_ssim(original_image, dehazed_image),4) plt.figure(figsize=(8,6)) barlist=plt.bar(['Original vs Dehazed'], [ssim_score], color='blue') for bar in barlist: yval = bar.get_height() plt.text(bar.get_x() + bar.get_width()/2.0, yval, str(yval), va='bottom') plt.title('Comparison of Original and Dehazed Images by SSIM Score') plt.show() ``` 此段脚本会读取两张灰度模式下的输入图像文件路径,并调用 `skimage` 提供的功能完成 SSIM 计算过程;接着借助 `matplotlib` 创建直方图表示两者间的相似度得分关系,方便使用者快速掌握两版本间的变化趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值