语言模型的评估常用指标(BLEU、ROUGE、PPL)

语言模型的评估常用指标

1.Accuracy(准确率):模型预测正确的样本数量占总样本量的比重

2.Precision(精确率):在被识别为正类别的样本中,为正类别的比例

3.Recall(召回率):在所有正类别样本中,被正确识别为正类别的比例

4.BLEU分数

评估一种语言翻译成另一种语言的文本质量的指标。它将“质量”的好坏定义为与人类翻译结果的一致性程度,取值范围是[0,1],越接近1,表明翻译质量越好。

  1. 根据‘n-gram’可以划分成多种评价指标,其中‘n-gram’指的是连续的单词个数为n,实践中,通常是取N=1~4,然后进行加权平均
  2. 计算过程:计算模型预测的句子和真实结果的N-grams模型,然后统计其匹配的个数,计算匹配度
  3. 举例
    假设机器翻译的译文candidate和一个参考翻译reference如下:
candidate:It is a nice day today
reference:today is a nice day
- 使用1-gram进行匹配
candidate:{It, is, a, nice, day, today}
reference:{today, is, a, nice, day}
结果:匹配度为5/6
- 使用2-gram进行匹配
candidate:{It is, is a, a nice, nice day, day today}
reference:{today is, is a, a nice, nice day}
结果:匹配度为3/5
- 使用3-gram进行匹配
candidate:{It is a, is a nice, a nice day, nice day today}
reference:{today is a, is a nice, a nice day}
结果:匹配度为2/4
4. 极端例子 对于:
candidate:the the the the
reference:The cat is standing on the ground
如果按照1-gram的方法进行匹配,则匹配度为1,显然是不合理的

python示例代码

from nltk.translate.bleu_score import sentence_bleu
candidate_texts = ["This", "is", "some", "generated", "text"] # 生成的文本
reference_texts = [["This", 
### BLEUROUGEPPL 指标的解释 #### BLEU (Bilingual Evaluation Understudy) BLEU 是一种用于评估机器翻译质量的度量标准。该方法通过比较候选译文与一个或多个参考译文之间的 n-gram 重叠来计算得分。具体来说,BLEU 计算的是精确匹配的比例,并对其进行一些平滑处理以避免极端情况下的零分[^1]。 对于自然语言生成任务而言,BLEU 广泛应用于自动评价模型产生的文本质量和准确性。然而值得注意的是,尽管高 BLEU 值通常意味着更好的性能,但它并不能完全反映人类感知上的流畅性和语义一致性。 ```python from nltk.translate.bleu_score import sentence_bleu reference = [['this', 'is', 'a', 'test']] candidate = ['this', 'is', 'a', 'test'] score = sentence_bleu(reference, candidate) print(score) ``` #### ROUGE (Recall-Oriented Understudy for Gisting Evaluation) ROUGE 主要关注召回率而非精度,即衡量生成的内容中有多少部分能够覆盖到参照文档中的片段。它同样基于n元语法(n-grams),词序列(Word Sequence)以及加权共现(Wighted Cooccurrence)[^2]。此度量常被用来评测摘要提取的效果,在信息检索领域也有一定应用价值。 ROUGE 家族有多种变体,比如 ROUGE-N 表示考虑 N 阶 n-gram;而 ROUGE-L 则侧重于最长公共子串(Longest Common Subsequence,LCS)相似度测量。 ```python from rouge import Rouge ref_summary = "the quick brown fox jumps over the lazy dog" gen_summary = "quick brown fox jump over dog" rouge = Rouge() scores = rouge.get_scores(gen_summary, ref_summary) print(scores) ``` #### PPL (Perplexity) 困惑度(perplexity)是统计语言建模中常用的一个概念,表示给定上下文中预测下一个单词难度的一种量化方式。较低的困惑度表明模型更擅长预测实际发生的词语分布,因此可以认为其表现更好。PPL 被广泛应用于评估预训练语言模型的能力,尤其是在开放域对话系统和文本续写方面具有重要意义[^3]。 ```python import torch.nn.functional as F import math def calculate_perplexity(logits, labels): loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-100) perplexity = math.exp(loss.item()) return perplexity ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值