机器学习-外汇预测

摘  要

 

外汇预测在金融领域具有重要的意义,可以帮助投资者制定更好的投资策略,企业降低汇率风险,政府制定更合适的经济政策,同时也对国际贸易关系产生影响。

本实验旨在通过实现线性回归模型,对时间序列数据(欧元和美元的兑换率)进行预测,并通过评价指标对模型进行评估。在实验中,我们使用Python编程语言,主要使用了pandas、numpy、scikit-learn、tabulate、matplotlib和torch等库。实验步骤包括数据准备、数据预处理、模型训练和评估等。通过不同的评价指标和MSE损失曲线,我们可以看出该模型的预测性能非常好,在测试集上取得了很好的效果。该实验为使用线性回归模型进行时间序列数据预测提供了一个简单的示例,并介绍了一些常用的评价指标和预处理技术。

1 概述

1.1 研究意义

(1)为投资者提供决策依据。外汇市场的波动性很高,投资者需要对未来的汇率变化做出预测,以便做出更好的投资决策。外汇预测研究可以为投资者提供准确的预测结果,帮助他们做出更好的投资决策。

(2)为企业降低汇率风险。企业在进行跨境贸易时需要进行货币兑换,如果汇率波动剧烈,企业可能会遭受重大损失。外汇预测研究可以帮助企业更好地控制汇率风险,降低损失风险。

(3)为政府制定经济政策提供参考。外汇市场的变化可能会影响到国家的货币政策和贸易政策等方面。通过外汇预测,政府可以更好地了解汇率变化的趋势和影响,以制定更合适的经济政策,促进经济发展。

(4)推动金融学科发展。外汇预测涉及到金融市场和经济学等多个学科,其中涉及到的技术和理论也十分丰富。外汇预测研究可以促进这些学科的交叉融合,推动学科的发展和创新。

(5)促进人工智能技术的应用。外汇预测研究可以促进人工智能技术在金融领域的应用。随着深度学习等技术的发展,人工智能已经成为外汇预测领域的重要工具之一,其可预测性和准确性得到了不断提高。

(6)促进国际贸易的发展。外汇市场的波动和汇率变化对国际贸易有着重要的影响。外汇预测研究可以为企业和政府提供汇率预测,帮助他们更好地制定贸易策略,促进国际贸易的发展和合作。

(7)促进国际合作和交流。外汇预测研究是一个具有全球性的研究领域,涉及到不同国家和地区的外汇市场和经济情况。通过国际合作和交流,可以促进不同国家和地区在外汇预测领域的经验和技术的分享和交流,推动研究的进一步深入和创新。

总之,外汇预测研究在国内外具有广泛的研究意义和实际应用价值,可以为投资者提供决策依据,降低企业汇率风险,为政府制定经济政策提供参考,推动金融学科发展和促进人工智能技术的应用。随着技术的发展和研究方法的不断改进,外汇预测研究将会成为一个更加重要和有挑战性的研究领域。

1.2 国内外研究现状

国内外对外汇预测的研究一直是金融和经济学领域的热点问题之一,目前的研究现状主要包括以下几个方面:

(1)传统统计模型的外汇预测方法。这种方法主要使用时间序列分析、回归分析、协整关系等统计模型来预测外汇汇率的变化。这些模型基于历史数据进行预测,可以捕捉到市场的基本规律和趋势,但其预测精度可能受限于模型的假设和数据质量等因素。传统统计模型的代表性方法包括ARIMA模型、VAR模型等。

(2)机器学习方法的外汇预测方法。这种方法主要使用人工神经网络、支持向量机、随机森林等机器学习算法来预测外汇汇率的变化。这些方法可以处理非线性关系和大规模数据,具有较高的预测精度。但其参数选择和数据处理等方面也存在一定的挑战。机器学习的代表性方法包括BP神经网络、SVM模型、随机森林等。

(3)深度学习方法的外汇预测方法。这种方法主要使用深度神经网络和卷积神经网络等深度学习算法来预测外汇汇率的变化。相比于传统统计模型和机器学习方法,深度学习方法可以处理更加复杂的数据和模式,并且具有更高的准确度。目前,基于深度学习的外汇预测方法已经成为研究热点之一,受到广泛关注。深度学习的代表性方法包括卷积神经网络、循环神经网络、深度置信网络等。

(4)基于文本挖掘和情感分析的外汇预测方法。这种方法主要使用自然语言处理技术来分析新闻报道和社交媒体等文本信息,并结合情感分析技术来预测汇率的变化。这种方法可以更好地反映市场情绪和预期,但其受到文本数据质量和语言差异等因素的影响。基于文本挖掘和情感分析的外汇预测方法在近年来也受到了越来越多的关注和研究。

除了以上几种方法,还有一些其他的外汇预测方法,如基于复杂网络理论的外汇预测方法、基于波动率模型的外汇预测方法、基于混沌理论的外汇预测方法等。这些方法各有优缺点,不同的方法可以结合使用,以提高外汇预测的准确度和可靠性。

总体来说,国内外对外汇预测的研究已经取得了很多进展,尤其是在机器学习和深度学习等技术的应用方面。同时,也存在一些挑战和待解决的问题,例如数据的质量和可靠性、模型的参数选择和优化、市场情绪和预期的分析等。此外,外汇市场本身也存在一定的不确定性和复杂性,这也是外汇预测研究面临的挑战之一。未来,随着技术的不断进步和数据的不断积累,外汇预测研究将会更加深入和广泛,为投资者、企业和政府等提供更加准确和可靠的汇率预测,推动金融市场的发展和创新。

1.3 本文主要工作

通过实现神经网络结构模型,分别对时间序列数据(欧元和美元的兑换率)进行预测,并通过评价指标对模型进行评估。
 

2.1 数据处理

2.1.1数据来源

    通过网上搜寻汇总。

2.1.2数据预处理方法

# 数据查看与缺失处理
df = pd.read_csv("./debug_data/EURUSD_M1_202012150519_202103251444.csv", sep="\t")
df.dropna(inplace=True)
values = df['<CLOSE>'].values.tolist()

# 数据集划分
X = []  # 特征集
y = []  # 标签集
# for i in range(60, len(values)):
#     X.append(values[i - 60:i])
#     y.append(values[i])
for i in range(60, 100):
    X.append(values[i - 60:i])
    y.append(values[i])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# 将数据转化为张量
X_train = torch.tensor(X_train).float()
y_train = torch.tensor(y_train).float()
X_test = torch.tensor(X_test).float()
y_test = torch.tensor(y_test).float()

 

2.2 网络结构

定义了一个名为ForexNet的神经网络模型,它继承自PyTorch中的nn.Module类。该模型由两个层组成:一个卷积层和一个全连接层。它的结构如下:

(1)输入数据是一系列60个外汇汇率数值。

(2)对输入序列应用有32个滤波器和一个3个元素的卷积核的一维卷积层。

(3)在卷积层后应用ReLU激活函数。

(4)对卷积层的输出应用一个核大小为2的最大池化层。

(5)最大池化层的输出被展平,并馈送到一个具有单个输出的全连接层。

(6)全连接层的输出表示预测的外汇汇率数值。

具体实现的代码为:

class ForexNet(nn.Module):
    def __init__(self):
        super(ForexNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=1, out_channels=32, kernel_size=3, padding=1)
        self.fc1 = nn.Linear(in_features=960, out_features=1)

    def forward(self, x):
        x = x.unsqueeze(1)
        x = self.conv1(x)
        x = nn.functional.relu(x)
        x = nn.functional.max_pool1d(x, kernel_size=2)
        x = x.view(x.size(0), -1)
        x = self.fc1(x)
        return x

2.3 损失函数

使用的损失函数是平均误差平方和,即nn.MSELoss()。该函数计算预测值与实际值之间的平均误差的平方,可以用来衡量模型的拟合效果。MSE 越小,代表模型的预测结果越接近真实值,模型的拟合效果越好。

在训练过程中,通过调用criterion(val_outputs.squeeze(), y_test)计算当前模型在验证集上的MSE,并记录到val_loss列表中。同时,在每个训练周期结束后,通过调用train_loss.append(loss.item())记录当前模型在训练集上的MSE。这样,在训练完成后,可以通过可视化train_loss和val_loss列表,来观察模型的训练情况和验证情况下的损失变化趋势。如果train_loss在不断降低并趋近于稳定,而val_loss在一定周期后开始上升,则可能存在过拟合的情况,需要调整模型的超参数或使用正则化等方法来避免过拟合,最后使用绘图函数plt.plot得到的损失曲线如图2.3.1所示9d45a0ad9f1f453a943d616708395dd3.png

图2.3.1 损失曲线图

 

 

 

 

2.4 实验结果及分析

在使用测试集对模型进行评估时,输出了多个评估指标,包括平均绝对误差、均方误差、均方根误差和回归决定系数R2。这些指标可以用来评估模型的预测性能。

1f04f790e5d34bd4affbd273d0d88ad0.png

    图2.4.1 数据输出结果图

从输出结果可以看出,模型的MAE为0.045,MSE为0.003,RMSE为0.054,R2为0.95。这些指标表明该模型具有较好的预测性能,可以较为准确地预测外汇汇率的走势。

同时,在预测结果的可视化图中,可以看到模型的预测结果和实际结果之间的差异较小,而且模型能够较好地捕捉到外汇汇率的变化趋势。这进一步证明了该模型的预测性能较好。

81b0a2dfede94529a49642e6c61678e2.png

图2.4.2 分析结果图

 

3 总结

3.1 卷积神经网络优缺点

神经网络结构模型在外汇预测中的优缺点如下:

优点:

(1)可以自动发现数据中的非线性关系:神经网络结构模型可以自动发现数据中的非线性关系,从而提高预测的准确性。与传统的线性模型相比,神经网络模型可以更好地处理复杂的非线性关系,尤其是在高维数据上。

(2)可以处理大规模数据集:神经网络结构模型可以处理大规模数据集,因为它们可以并行处理大量的数据。在外汇预测中,如果使用传统的统计学习方法,例如线性回归,可能需要花费大量时间来处理大规模的数据集。

(3)可以自适应地学习数据特征:神经网络结构模型可以自适应地学习数据特征,从而提高预测的准确性。与传统的统计学习方法相比,神经网络模型可以自动选择和学习最相关的特征,而不需要手动选择和提取特征。这使得神经网络模型更加适合于处理高维、复杂的数据集。

(4)可以应用于多种外汇预测问题:神经网络结构模型可以应用于多种外汇预测问题,例如时间序列预测、图像预测等。这使得神经网络模型非常灵活,并且可以适应不同类型的数据。

 

缺点:

(1)需要大量的数据和计算资源:神经网络结构模型需要大量的数据和计算资源来训练和优化模型。在外汇预测中,如果数据集过小或者计算资源受限,可能会影响模型的训练和预测效果。

(2)可能会出现过拟合现象:神经网络结构模型容易出现过拟合现象,即模型在训练集上表现良好,但在测试集上表现较差。为了避免过拟合问题,需要对模型进行正则化、降维等处理。

(3)模型结构复杂,难以解释:神经网络结构模型通常由多个层组成,每个层都包含多个神经元,因此模型结构相对复杂,很难解释其中的每个参数和变量的含义。这使得神经网络模型在实际应用中难以解释和理解。

(4)训练时间较长:神经网络结构模型通常需要较长的训练时间,因为在训练过程中需要不断地调整模型参数以最小化损失函数。这可能会导致训练时间较长,尤其是在处理大规模数据集时。

3.2 发展方向

神经网络结构在外汇预测上的发展方向有以下几个方面:

(1)深度神经网络:深度神经网络是一种多层的神经网络结构,可以自动学习数据的特征,从而提高预测的准确性。在外汇预测中,深度神经网络可以用来处理更复杂的外汇市场数据,例如高维时间序列数据、非线性关系等。未来的发展方向可能会集中在构建更深层次的神经网络结构,以实现更高的预测准确性。

(2)迁移学习:迁移学习是一种利用已有知识来解决新问题的机器学习方法。在外汇预测中,迁移学习可以用来将预训练的神经网络模型应用于新的外汇市场数据,从而提高模型的预测能力。未来的发展方向可能会集中在利用迁移学习来构建更加智能的神经网络结构,以适应不同类型的外汇市场数据。

(3)自适应学习:自适应学习是一种利用神经网络结构自适应地学习数据特征的机器学习方法。在外汇预测中,自适应学习可以用来自动选择和学习最相关的特征,从而提高模型的预测能力。未来的发展方向可能会集中在利用自适应学习来构建更加灵活的神经网络结构,以适应不同类型的外汇市场数据。

(4)模型解释性:神经网络结构通常由多个层组成,每个层都包含多个神经元,因此模型结构相对复杂,很难解释其中的每个参数和变量的含义。未来的发展方向可能会集中在提高神经网络模型的可解释性,例如通过可视化技术、特征选择、模型压缩等方法来解释神经网络模型。

(5)多模型组合:在外汇预测中,可以将多个神经网络结构模型组合起来,以提高预测的准确性和鲁棒性。例如,可以将多个神经网络结构模型的预测结果进行加权平均,或者使用集成学习方法,例如随机森林、boosting等方法,来组合多个模型的预测结果。未来的发展方向可能会集中在构建更加精细的多模型组合方法,以提高外汇预测的准确性和稳定性。

 

 

 

 

参 考 文 献

[1] Zhang, G. P. (2003). 一种混合ARIMA和神经网络模型的时间序列预测方法. 神经计算学报, 15(6), 647-654.

[2] Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). 基于人工神经网络和时间序列模型的商品价格预测分析. 电子商务研究, 11(4), 383-394.

[3] Brownlee, J. (2019). 如何开发用于时间序列预测的多层感知器模型. 机器学习大师.

[4] Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). 极限学习机:理论与应用. 神经计算学报, 18(3), 257-263.

[5] Yao, X., Wang, Y., & Li, Z. (2020). 时间序列预测的深度学习方法综述. 工程数学学报, 37(3), 341-357.

[6]Zhang, S., Yao, L., Sun, A., & Tay, Y. (2020). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1-38.

[7]Zhang, C., Li, Z., & Wang, J. (2020). Improving the interpretability of deep neural networks with knowledge distillation. Neurocomputing, 398, 9-19.

[8]Wang, J., Zhao, Y., & Liu, L. (2019). Multi-model ensemble deep learning for wind speed forecasting. Applied Energy, 233, 79-91.

[9]Zhang, H., Cao, L., & Li, P. (2016). A deep neural network-based multi-model ensemble method for electricity price forecasting. Energies, 9(2), 93.

[10]Yao, X., Wang, Y., & Li, Z.(2020). Deep Learning for Time Series Forecasting: A Survey. Mathematical Problems in Engineering, 2020.

完整源码以及数据集链接:

源码数据集.zip官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘123云盘为您提供源码数据集.zip最新版正式版官方版绿色版下载,源码数据集.zip安卓版手机版apk免费下载安装到手机,支持电脑端一键快捷安装https://www.123pan.com/s/IwAGjv-R1VVv.html%E6%8F%90%E5%8F%96%E7%A0%81:2023

 

 

 

 

 

 

 

 

 

  • 21
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛马程序员24

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值