数据结构 - 树,三探之代码实现

数据结构 - 树,三探之代码实现

 本文介绍了使用数组和链表两种方式实现二叉树,包括初始化、节点操作(如获取、添加、删除)、以及遍历方法(前序、中序、后序、层次遍历)。测试代码已上传至代码库。 

书接上回,今天和大家一起动手来自己实现树。

相信通过前面的章节学习,大家已经明白树是什么了,今天我们主要针对二叉树,分别使用顺序存储和链式存储来实现树。

01、数组实现

我们在上一节中说过,如果从树的顶层开始从上到下,从左到右,对每个节点按顺序进行编号,根节点为1作为起始,则有节点编号i,其左子节点编号为2i,其右子节点编号为2i+1。但是我们知道数组的索引是从0开始,因此如果我们用数组实现二叉树,那么我们可以把上面的编号改为从0开始,因此可以得到如下结论:

节点编号:i;

其左子节点编号:2i+1;

其右子节点编号:2i+2;

1、初始化 Init

初始化主要是指定树节点容量,创建指定容量的数组。

//初始化树为指定容量

public MyselfTreeArray<T> Init(int capacity)

{

    //初始化指定长度数组用于存放树节点元素

    _array = new T[capacity];

    //返回树

    return this;

}

2、获取树节点数 Count

树节点数可以通过内部数组长度直接获取。

//树节点数量

public int Count

{

    get

    {

        return _array.Length;

    }

}

3、获取节点索引 GetIndex

获取节点索引主要是为了把节点值转为索引值,因为我们是使用数组实现,元素的操作更多依赖索引。其实我们还有其他方案来处理获取索引的方式,比如可以通过设计元素对象使其包含索引字段,这样其实操作起来更为方便。下面我们还是用最直接获取的方法作为演示。

//返回指定数据的索引   

public int GetIndex(T data)

{

    if (data == null)

    {

        return -1;

    }

    //根据值查找索引

    return Array.IndexOf(_array, data);

}

4、计算父节点索引 CalcParentIndex

该方法用于实现通过子节点索引计算父节点索引,无论左子节点还是右子节点,使用下面一个公式就可以了,代码如下:

//根据子索引计算父节点索引

public int CalcParentIndex(int childIndex)

{

    //应用公式计算父节点索引

    var parentIndex = (childIndex + 1) / 2 - 1;

    //检查索引是否越界

    if (childIndex <= 0 || childIndex >= _array.Length

        || parentIndex < 0 || parentIndex >= _array.Length)

    {

        return -1;

    }

    //返回父节点索引

    return parentIndex;

}

5、计算左子节点索引 CalcLeftChildIndex

该方法用于根据父节点索引计算左子节点索引。

//根据父节点索引计算左子节点索引

public int CalcLeftChildIndex(int parentIndex)

{

    //应用公式计算左子节点索引

    var leftChildIndex = 2 * parentIndex + 1;

    //检查索引是否越界

    if (leftChildIndex <= 0 || leftChildIndex >= _array.Length

        || parentIndex < 0 || parentIndex >= _array.Length)

    {

        return -1;

    }

    //返回左子节点索引

    return leftChildIndex;

}

6、计算右子节点 CalcRightChildIndex

该方法用于根据父节点索引计算右子节点索引。

//根据父节点索引计算右子节点索引

public int CalcRightChildIndex(int parentIndex)

{

    //应用公式计算右子节点索引

    var rightChildIndex = 2 * parentIndex + 2;

    //检查索引是否越界

    if (rightChildIndex <= 0 || rightChildIndex >= _array.Length

        || parentIndex < 0 || parentIndex >= _array.Length)

    {

        return -1;

    }

    //返回右子节点索引

    return rightChildIndex;

}

7、获取节点值 Get

该方法通过节点索引获取节点值,如果索引越界则报错。

//通过节点索引获取节点值

public T Get(int index)

{

    //检查索引是否越界

    if (index < 0 || index >= _array.Length)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //返回节点值

    return _array[index];

}

8、获取左子节点值 GetLeftChild

该方法是通过节点索引获取其左节点值,首先获取左子节点索引,再取左子节点值。

//通过节点索引获取其左子节点值

public T GetLeftChild(int parentIndex)

{

    //获取左子节点索引

    var leftChildIndex = CalcLeftChildIndex(parentIndex);

    //检查索引是否越界

    if (leftChildIndex < 0)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //返回左子节点值

    return _array[leftChildIndex];

}

9、获取右子节点值 GetRightChild

该方法是通过节点索引获取其右节点值,首先获取右子节点索引,再取右子节点值。

//通过节点索引获取其右子节点值

public T GetRightChild(int parentIndex)

{

    //获取右子节点索引

    var rightChildIndex = CalcRightChildIndex(parentIndex);

    //检查索引是否越界

    if (rightChildIndex < 0)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //返回右子节点值

    return _array[rightChildIndex];

}

10、添加或更新节点值 AddOrUpdate

该方法是通过节点索引添加或更新节点值,因为数组初始化的时候已经有了默认值,因此添加或者更新节点值就是直接给数组元素赋值,如果索引越界则报错。

//通过节点索引添加或更新节点值

public void AddOrUpdate(int index, T data)

{

    //检查索引是否越界

    if (index < 0 || index >= _array.Length)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //更新值

    _array[index] = data;

}

11、添加或更新左子节点值 AddOrUpdateLeftChild

该方法根据节点值添加或更新其左子节点值,首先通过节点值找到其索引,然后通过其索引计算出其左子节点索引,索引校验成功后,直接更新左子节点值。

//通过节点值添加或更新左子节点值

public void AddOrUpdateLeftChild(T parent, T left)

{

    //获取节点索引

    var parentIndex = GetIndex(parent);

    //获取左子节点索引

    var leftChildIndex = CalcLeftChildIndex(parentIndex);

    //检查索引是否越界

    if (leftChildIndex < 0)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //更新值

    _array[leftChildIndex] = left;

}

12、添加或更新右子节点值 AddOrUpdateRightChild

该方法根据节点值添加或更新其右子节点值,首先通过节点值找到其索引,然后通过其索引计算出其右子节点索引,索引校验成功后,直接更新右子节点值。

//通过节点值添加或更新右子节点值

public void AddOrUpdateRightChild(T parent, T right)

{

    //获取节点索引

    var parentIndex = GetIndex(parent);

    //获取左子节点索引

    var rightChildIndex = CalcRightChildIndex(parentIndex);

    //检查索引是否越界

    if (rightChildIndex < 0)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //更新值

    _array[rightChildIndex] = right;

}

13、删除节点及其所有后代节点 Remove

该方法通过节点索引删除其自身以及其所有后代节点,删除后代节点需要左右子节点分别递归调用方法自身。

//通过节点索引删除节点及其所有后代节点

public void Remove(int index)

{

    //非法索引直接跳过

    if (index < 0 || index >= _array.Length)

    {

        return;

    }

    //清除节点值

    _array[index] = default;

    //获取左子节点索引

    var leftChildIndex = CalcLeftChildIndex(index);

    //递归删除左子节点及其所有后代

    Remove(leftChildIndex);

    //获取右子节点索引

    var rightChildIndex = CalcRightChildIndex(index);

    //递归删除右子节点及其所有后代

    Remove(rightChildIndex);

}

14、删除左节点及其所有后代节点 RemoveLeftChild

该方法通过节点值删除其左节点以及其左节点所有后代节点,首先通过节点值获取节点索引,然后计算出左子节点索引,最后通过调用删除节点Remove方法完成删除。

//通过节点值删除其左节点及其所有后代节点

public void RemoveLeftChild(T parent)

{

    //获取节点索引

    var parentIndex = GetIndex(parent);

    //获取左子节点索引

    var leftChildIndex = CalcLeftChildIndex(parentIndex);

    //检查索引是否越界

    if (leftChildIndex < 0)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //删除左子节点及其所有后代

    Remove(leftChildIndex);

}

15、删除右节点及其所有后代节点 RemoveRightChild

该方法通过节点值删除其右节点以及其右节点所有后代节点,首先通过节点值获取节点索引,然后计算出右子节点索引,最后通过调用删除节点Remove方法完成删除。

//通过节点值删除其右节点及其所有后代节点

public void RemoveRightChild(T parent)

{

    //获取节点索引

    var parentIndex = GetIndex(parent);

    //获取右子节点索引

    var rightChildIndex = CalcRightChildIndex(parentIndex);

    //检查索引是否越界

    if (rightChildIndex < 0)

    {

        throw new IndexOutOfRangeException("无效索引");

    }

    //删除右子节点及其所有后代

    Remove(rightChildIndex);

}

16、前序遍历 PreOrderTraversal

前序遍历的核心思想就是先打印树的根节点,然后再打印树的左子树,最后打印树的右子树。

//前序遍历

public void PreOrderTraversal(int index = 0)

{

    //非法索引直接跳过

    if (index < 0 || index >= _array.Length)

    {

        return;

    }

    //打印

    Console.Write(_array[index]);

    //获取左子节点索引

    var leftChildIndex = CalcLeftChildIndex(index);

    //打印左子树

    PreOrderTraversal(leftChildIndex);

    //获取右子节点索引

    var rightChildIndex = CalcRightChildIndex(index);

    //打印右子树

    PreOrderTraversal(rightChildIndex);

}

17、中序遍历 InOrderTraversal

中序遍历的核心思想就是先打印树的左子树,然后再打印树的根节点,最后打印树的右子树。

//中序遍历

public void InOrderTraversal(int index = 0)

{

    //非法索引直接跳过

    if (index < 0 || index >= _array.Length)

    {

        return;

    }

    //获取左子节点索引

    var leftChildIndex = CalcLeftChildIndex(index);

    //打印左子树

    InOrderTraversal(leftChildIndex);

    //打印

    Console.Write(_array[index]);

    //获取右子节点索引

    var rightChildIndex = CalcRightChildIndex(index);

    //打印右子树

    InOrderTraversal(rightChildIndex);

}

18、后序遍历 PostOrderTraversal

后序遍历的核心思想就是先打印树的左子树,然后再打印树的右子树,最后打印树的根节点。

//后序遍历

public void PostOrderTraversal(int index = 0)

{

    //非法索引直接跳过

    if (index < 0 || index >= _array.Length)

    {

        return;

    }

    //获取左子节点索引

    var leftChildIndex = CalcLeftChildIndex(index);

    //打印左子树

    PostOrderTraversal(leftChildIndex);

    //获取右子节点索引

    var rightChildIndex = CalcRightChildIndex(index);

    //打印右子树

    PostOrderTraversal(rightChildIndex);

    //打印

    Console.Write(_array[index]);

}

19、层次遍历 LevelOrderTraversal

层次遍历的核心思想是借助队列,从根节点开始,从上到下,从左到右,先入列后等待后续打印,然后出列后立即打印,同时把此节点的左右子节点按顺序加入队列,循环往复直至所有元素打印完成。

//层次遍历

public void LevelOrderTraversal()

{

    //创建一个队列用于层次遍历

    var queue = new Queue<int>();

    //先把根节点索引0入队

    queue.Enqueue(0);

    //只有队列中有值就一直处理

    while (queue.Count > 0)

    {

        //出列,取出第一个节点索引

        var currentIndex = queue.Dequeue();

        //打印第一个节点值

        Console.Write(_array[currentIndex]);

        //获取左子节点索引

        int leftChildIndex = CalcLeftChildIndex(currentIndex);

        // 如果左子节点存在,将其索引加入队列

        if (leftChildIndex >= 0)

        {

            queue.Enqueue(leftChildIndex);

        }

        //获取右子节点索引

        int rightChildIndex = CalcRightChildIndex(currentIndex);

        // 如果右子节点存在,将其索引加入队列

        if (rightChildIndex >= 0)

        {

            queue.Enqueue(rightChildIndex);

        }

    }

}

02、链表实现

链表实现通用性会更强,基本可以实现所有的树结构,同时操作也更方便了,下面我们还是以二叉树的实现为例做演示。

1、初始化树根节点 InitRoot

在初始化树根节点前需要定义好链表的节点,其包含数据域和左右子节点,同时在树种还需要维护根节点以及节点数量两个私有字段。

public class MyselfTreeNode<T>

{

    //数据域

    public T Data { get; set; }

    左子节点

    public MyselfTreeNode<T> Left { get; set; }

    //右子节点

    public MyselfTreeNode<T> Right { get; set; }

    public MyselfTreeNode(T data)

    {

        Data = data;

        Left = null;

        Right = null;

    }

}

public class MyselfTreeLinkedList<T>

{

    //根节点

    private MyselfTreeNode<T> _root;

    //树节点数量

    private int _count;

    //初始化树根节点

    public MyselfTreeLinkedList<T> InitRoot(T root)

    {

        _root = new MyselfTreeNode<T>(root);

        //树节点数量加1

        _count++;

        //返回树

        return this;

    }

}

2、获取树节点数量 Count

树节点数量可以通过私有字段_count直接返回。

//获取树节点数量

public int Count

{

    get

    {

        return _count;

    }

}

3、获取根节点 Root

根节点可以通过私有字段_root直接返回。

//获取根节点

public MyselfTreeNode<T> Root

{

    get

    {

        return _root;

    }

}

4、添加或更新左子节点值 AddOrUpdateLeftChild

该方法是通过节点添加或更新其左子节点值。

//通过指定节点添加或更新左子节点值

public void AddOrUpdateLeftChild(MyselfTreeNode<T> parent, T left)

{

    if (parent.Left != null)

    {

        //更节点值

        parent.Left.Data = left;

        return;

    }

    //添加节点

    parent.Left = new MyselfTreeNode<T>(left);

    //节点数量加1

    _count++;

}

5、添加或更新右子节点值 AddOrUpdateRightChild

该方法是通过节点添加或更新其右子节点值。

//通过指定节点添加或更新右子节点元素

public void AddOrUpdateRightChild(MyselfTreeNode<T> parent, T right)

{

    if (parent.Right != null)

    {

        //更节点值

        parent.Right.Data = right;

        return;

    }

    //添加节点

    parent.Right = new MyselfTreeNode<T>(right);

    //节点数量加1

    _count++;

}

6、删除节点及其后代节点 Remove

该方法通过节点删除其自身以及其所有后代节点,需要递归删除左右子节点及其所有后代节点。

//通过指定节点删除节点及其后代节点

public void Remove(MyselfTreeNode<T> node)

{

    if (node.Left != null)

    {

        //递归删除左子节点的所有后代

        Remove(node.Left);

    }

    if (node.Right != null)

    {

        //递归删除右子节点的所有后代

        Remove(node.Right);

    }

    //删除节点

    node.Data = default;

    //节点数量减1

    _count--;

}

7、前序遍历 PreOrderTraversal

核心思想和数组实现一样。

//前序遍历

public void PreOrderTraversal(MyselfTreeNode<T> node)

{

    //打印

    Console.Write(node.Data);

    if (node.Left != null)

    {

        //打印左子树

        PreOrderTraversal(node.Left);

    }

    if (node.Right != null)

    {

        //打印右子树

        PreOrderTraversal(node.Right);

    }

}

8、中序遍历 InOrderTraversal

核心思想和数组实现一样。

//中序遍历

public void InOrderTraversal(MyselfTreeNode<T> node)

{

    if (node.Left != null)

    {

        //打印左子树

        InOrderTraversal(node.Left);

    }

    //打印

    Console.Write(node.Data);

    if (node.Right != null)

    {

        //打印右子树

        InOrderTraversal(node.Right);

    }

}

9、后序遍历 PostOrderTraversal

核心思想和数组实现一样。

//后序遍历

public void PostOrderTraversal(MyselfTreeNode<T> node)

{

    if (node.Left != null)

    {

        //打印左子树

        PostOrderTraversal(node.Left);

    }

    if (node.Right != null)

    {

        //打印右子树

        PostOrderTraversal(node.Right);

    }

    //打印

    Co

nsole.Write(node.Data);

}

10、层次遍历 LevelOrderTraversal

核心思想和数组实现一样。

//层次遍历

public void LevelOrderTraversal()

{

    //创建一个队列用于层次遍历

    Queue<MyselfTreeNode<T>> queue = new Queue<MyselfTreeNode<T>>();

    //先把根节点入队

    queue.Enqueue(_root);

    //只有队列中有值就一直处理

    while (queue.Count > 0)

    {

        //出列,取出第一个节点

        var node = queue.Dequeue();

        //打印第一个节点值

        Console.Write(node.Data);

        // 如果左子节点存在将其加入队列

        if (node.Left != null)

        {

            queue.Enqueue(node.Left);

        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛马程序员2025

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值