基于GPU的GEMM矩阵相乘运算优化

文章详细介绍了GEMM(GeneralMatrixMultiply)操作的优化方法,包括矩阵的分块处理(如A和B的竖切和横切),以及如何通过线程块和CUDA架构提高计算效率。关键在于将矩阵乘法转换为向量乘法,通过块点乘提升运算访存比,优化内存访问和计算性能。文章还讨论了不同级别的BLAS操作和矩阵划分策略。

从上图中我们可以看到三种处理方法。第一种是将A和B矩阵分块(竖切和横切),第二种方法是将C和B矩阵分块(竖切和竖切),第三种方法是将C和A矩阵分块(横切和横切):

 GEMM的子任务是GEPP或GEMP;最小粒度的任务是GEBP或GEPB或点乘。 

这里面M表示横向和纵向维度都很大的矩阵,P表示横向或纵向有一个维度很小的矩阵(或者就是一个向量),B表示横向和纵向维度都很大的矩阵(或者就是只有一个元素的矩阵或向量)。

其各自计算方法大致如下:

对于内存和线程结构:

### 使用 cuBLAS 实现矩阵相乘 为了使用 cuBLAS 进行高效的矩阵相乘操作,需要初始化 CUDA 和 cuBLAS 库,并调用相应的 API 函数完成计算。下面是一个完整的例子说明如何通过 cuBLAS 完成两个浮点数矩阵之间的乘法。 #### 初始化环境与资源分配 在执行任何 cuBLAS 调用之前,先要创建一个上下文句柄用于后续的操作: ```cpp #include <cuda_runtime.h> #include <cublas_v2.h> // 错误处理宏定义简化错误检测过程 #define cudaErrorCheck(call) \ do { \ cudaError_t err = call; \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA Error: %s\n", cudaGetErrorString(err)); \ exit(EXIT_FAILURE); \ } \ } while(0) int main() { cublasHandle_t handle; cublasStatus_t status; // 创建 cuBLAS 句柄 status = cublasCreate(&handle); if (status != CUBLAS_STATUS_SUCCESS){ printf("Failed to create cuBLAS handle.\n"); return -1; } } ``` 此部分代码负责设置必要的运行时环境以及异常情况下的报错机制[^1]。 #### 数据准备 接着准备好待运算的数据集并将它们传输到 GPU 设备上: ```cpp const int m = 2; // 行数 const int n = 3; // 列数 const int k = 4; // 中间维度大小 float h_A[m*k] = {...}; // 主机端输入矩阵A数据填充... float h_B[k*n] = {...}; // 主机端输入矩阵B数据填充... float *d_A, *d_B, *d_C; size_t size_A = m * k * sizeof(float); size_t size_B = k * n * sizeof(float); size_t size_C = m * n * sizeof(float); // 分配设备内存空间给三个矩阵变量 cudaErrorCheck(cudaMalloc((void**)&d_A, size_A)); cudaErrorCheck(cudaMalloc((void**)&d_B, size_B)); cudaErrorCheck(cudaMalloc((void**)&d_C, size_C)); // 将主机上的初始值复制到对应的设备指针位置处 cudaErrorCheck(cudaMemcpy(d_A, h_A, size_A, cudaMemcpyHostToDevice)); cudaErrorCheck(cudaMemcpy(d_B, h_B, size_B, cudaMemcpyHostToDevice)); ``` 这里假设 `h_A` 和 `h_B` 已经被适当赋值为所需的测试数值。 #### 执行矩阵乘法 现在可以调用 cuBLAS 提供的 gemm 接口来进行实际的矩阵乘法运算了: ```cpp // 设置 alpha=1.0f,beta=0.0f 参数控制线性组合系数 const float alf = 1.f; const float bet = 0.f; // 调用 cuBLAS 的 GEMM 方法实现 C := α*A*B + β*C status = cublasSgemm(handle, CUBLAS_OP_N /* op(A)=A */, CUBLAS_OP_N /* op(B)=B */, n /* Number of rows in matrix op(B) and C*/, m /* Number of columns in matrix op(A) and C*/, k /* Number of columns/rows in matrices A/B */, &alf, d_B, n /* Leading dimension of B */, d_A, k /* Leading dimension of A */, &bet, d_C, n /* Leading dimension of C */ ); if(status != CUBLAS_STATUS_SUCCESS){ printf("GEMM failed!\n"); return -1; } // 把结果从设备拷贝回主机侧以便验证正确性 float h_C[m*n]; cudaErrorCheck(cudaMemcpy(h_C, d_C, size_C, cudaMemcpyDeviceToHost)); ``` 这段程序片段展示了怎样配置参数并通过一次函数调用来高效地完成大规模矩阵间的乘积运算。 #### 清理工作 最后不要忘记释放所占用的所有硬件资源: ```cpp // 解除对 cuBLAS 上下文对象的引用并销毁它 cublasDestroy(handle); // 释放先前申请过的显存区域 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); ``` 上述流程构成了基于 NVIDIA cuBLAS 库的一个典型应用案例,能够显著提升涉及大量密集型代数变换任务的工作效率。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值