- 博客(7)
- 收藏
- 关注
原创 自然语言处理【NLP】系列——实战自然语言推理中的问答任务(小白级入门教程)
在问答任务(Question Answering)中,BERT 等模型通过给定一个问题和一段段落,预测出段落中最有可能作为答案的子串。
2025-05-27 15:54:46
941
原创 自然语言处理【NLP】系列之文本分类——为情绪识别微调BERT(小白级入门教程)
本篇博文主要用来学习如何为一个文本分类任务微调BERT模型,本次具体要做的任务是情绪识别,属于入门级教程哦!
2025-05-27 14:33:31
947
原创 图生文系列之LLaVA(一):LLaVA的快速理解
LLaVA的模型架构基于CLIP(Contrastive Language-Image Pre-training)的视觉编码器和LLaMA(一个开源的大语言模型)的语言解码器。通过将这两个强大的模型连接起来,LLaVA能够在视觉和语言两个维度上进行高效的信息处理与融合。具体来说,CLIP的视觉编码器负责提取图像中的视觉特征,而LLaMA的语言解码器则负责理解和生成自然语言文本。通过端到端的微调,LLaVA能够学会如何将视觉特征转换为语言描述,实现视觉与语言的双向交互。
2025-05-06 16:45:35
1194
原创 Batch Normalization和Layer Normalization的区别(二)
的若干个维度。这些维度将被用来计算均值和标准差,并进行归一化。
2025-05-06 13:55:51
843
原创 Batch Normalization和Layer Normalization的区别(一)
笔者在学习Vision Transformer模型时,注意到Transformer Encoder模块中,在进行多头注意力机制(Multi-Head Attention)和前馈神经网络层(MLP)之前都会进行Layer Normalization。想到之前在学习其他模型时用到的Batch Normalization,于是提出疑问:二者的主要区别以及适用情况是什么?特整理出该文进行系统地学习。
2025-05-02 12:06:53
1076
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人