如何开始在客户关系管理(CRM)中应用代理型人工智能(一)

**举措:**客户关系管理战略与客户体验;客户服务与技术支持
自主人工智能有望彻底改变客户关系管理。然而这项新技术也引发了关于落地实施的诸多疑问。本研究帮助应用领导者掌握如何运用其赋能客户关系管理系统并顺利开展部署。
概述
主要发现
2025年,围绕CRM系统中代理式人工智能的新术语及其日益高涨的热度,将继续给应用领导者们带来困惑。他们可能被迫踏入评估、试验和采用新解决方案的陌生领域,同时还需获取必要的专业知识。
Agentic AI有望成为自2000年代初SaaS以来对CRM领域产生最大技术影响的创新。它将深刻改变消耗的席位许可证数量、处理的客户互动量以及人类在客户关系中的角色定位。
代理式人工智能将基础模型向现有客户关系管理软件的执行层推进了一步,使人工智能成为管理传统上以人为核心的客户关系的自然支持。
相较于CRM从业者,更多C级高管接受了自主式AI的理念,因为它具有重塑商业模式、显著提升生产力以及改善客户与员工体验的潜力。
建议
对利用代理型人工智能力量感兴趣的CRM应用领导者应当:
■ 通过本研究提供的信息,收集关于CRM系统中代理型人工智能的相关资料。
确定代理型人工智能的适用场景。
■ 明确其代理型人工智能计划的实施方式(采购或自建)。
■ 通过减少遗留系统、投资数据与内容管理、提升IT技能水平以及完善人工智能治理体系,为代理型人工智能做好准备。
战略规划假设
到2027年,自主人工智能将成为改善客户体验的头号新部署技术。
到2027年,在人工智能增强图形界面、AI助手、生产力工具集成和智能代理的推动下,CRM用户的屏幕使用时间将减少50%。
引言
Gartner将代理式人工智能定义为具有目标驱动能力的软件实体,这些实体被组织授予权限,可代表其自主或半自主地做出决策并采取行动。这些实体运用人工智能技术——结合记忆、规划、感知、工具集和防护机制等组件——来完成任务并实现目标。
代理式人工智能无需显式输入,也不产生预设输出。这类AI实体能够接收目标指令、迭代并委派任务,输出变量和动态信息——通常用于增强用户的工作效能,但有时会取代员工的工作需求。
更多信息请参阅《2025年顶级战略技术趋势:代理式人工智能》。
过去两年间,代理式人工智能这一新兴趋势主要局限于AI初创企业、超大规模云服务商及客户关系管理软件供应商的产品研发团队。直至2024年末,包括Salesforce、微软、ServiceNow和HubSpot在内的一批大型CRM供应商宣布将此项功能整合至其主流产品中。
大型CRM供应商快速迭代创新产品,在过去12个月内相继推出嵌入式生成式AI(GenAI)功能、AI助手直至代理型AI。在早期GenAI实验阶段,CRM应用负责人发现基础大语言模型(LLMs)应用于CRM系统时存在局限性,这源于模型本身的非确定性特质。初期实验仅通过CRM系统直接调用LLMs而缺乏代理框架,导致输出结果不可靠,应用场景和价值受限。
CRM中的代理式人工智能通过搭载大型语言模型的推理引擎瞄准这些局限,将用户意图分解为规划与行动循环,并将任务分配给具备专业技能的小型AI代理。这些CRM中的AI代理能够访问系统内丰富的数据层、内容、工作流及API接口。这种具备决策委派能力和技能专业化的代理式AI设计模式,与CRM用户需求及任务场景高度契合。
客户关系管理(CRM)软件是代理式人工智能的理想应用场景,原因如下(见图1):
■ CRM软件能够获取客户与企业/组织之间的交互记录、上下文信息、沟通内容及对话洞察。这些数据类型多为非结构化且未充分开发利用,为生成式人工智能提供了最大的创新潜力空间。
■ CRM软件具备大量成熟的自动化功能模块,可调用现有数据、元数据、表单、应用程序接口(API)、工作流和流程编排系统。其中多数功能均可被代理式AI所整合,无论部署在CRM系统内部还是跨多系统架构。
■ CRM软件通常集成或对接现代数据平台与知识库系统。优质的数据与知识管理是代理式AI运行的基石。
■ CRM软件属于高度受控环境。虽然AI代理确实会带来新的治理挑战,但现有授权机制、隐私保护与信任控制体系已较为完善。
■ 企业已通过嵌入式AI或AI助手在CRM领域开展过大型语言模型(LLM)的相关实验,积累了一定经验教训。
■ 众多CRM应用场景能显著提升员工与客户的生产力水平和体验感受。
■ CRM流程既需要控制力与透明度,又并非全部属于关键业务(高风险)范畴。其中部分流程变更频率高但风险较低,恰恰适合由代理式AI提供支持。
■ 代理型人工智能能够有效收集上下文信息并准确识别意图,可用于在客户关系管理系统中实现可扩展的个性化服务与自动化流程。
在这里插入图片描述
本研究作为"企业应用程序未来"项目的一部分(参见注释1),旨在帮助客户关系管理应用负责人更深入理解代理型人工智能及其对CRM领域的影响,从而为其个人及所在组织做好实施准备。
分析
CRM中的代理型人工智能:现状与未来
对代理技术最感兴趣的是企业高管层。他们正面临着来自咨询顾问关于AI代理的密集推销,以及各大供应商高管路演团队对其新型代理解决方案的轮番宣传。这意味着应用部门负责人绝不能忽视代理型AI的发展。他们必须建立对该技术的认知体系,并跟上其快速迭代的步伐。这要求持续学习新产品、新工具、新技能,有时还需要评估新的供应商合作伙伴。
Gartner咨询公司将自主人工智能视为2025年前最具颠覆性潜力的技术创新之一。各领域均取得显著进展:硬件、模型、托管与工具、以及应用层面(见图2)。这些投资未见放缓迹象,如今亟需展现投资回报率。
在这里插入图片描述
现在,让我们聚焦客户关系管理(CRM)软件中的代理式人工智能技术。大型CRM供应商的代理式AI技术通过在现有软件架构上部署AI代理来实现运作。这些AI代理充分利用了CRM系统中既有的工作流、规则、数据及应用程序接口(API)。AI代理与人类协同工作并提供支持,其具体应用场景包括营销内容生成、潜在客户培育自动化、销售指导、服务聊天机器人以及协助客服人员解决案例的自动化系统。(有关主要CRM供应商代理式AI产品的概述,请参阅注释2。)
与此同时,数百家新兴初创企业宣称提供"AI代理技术",其中许多企业涌入CRM领域。这是因为与传统CRM应用开发相比,构建代理型AI应用程序的市场准入门槛更低。众多代理型AI初创公司集中在那些存在明显机遇的领域——利用AI改造人工流程(如撰写招标书),或处理丰富的语音、图像和视频数据。不少初创企业还致力于推出由AI代理支持的新一代销售与服务聊天机器人。
对于规模较小的终端用户组织而言,初创企业开发的这些代理式人工智能应用程序颇具吸引力,因为相较于传统CRM应用程序的实施,部署此类代理式AI应用所需投入的精力更少。
Gartner咨询公司认为,代理式AI将对CRM技术基础产生深远影响(关于现有CRM体验未来如何被AI代理取代的预测,请参阅注释3)。但这一变革与普及所需的时间将比多数人预期的更为漫长。未来三年内,代理式AI不会取代终端用户组织的主要CRM系统。Gartner预估需要五到七年时间才会出现更剧烈的变革。新进入者需要时间成长,终端用户组织也需要时间改造其业务能力并接纳新技术。
不过代理式AI目前就能以较小规模实现落地。短期内,代理式AI将被用于在多个低风险使用场景中增强组织的CRM系统。未来12个月内,我们还将看到大型CRM供应商现有客户中前20%的企业会采用某种程度的CRM代理式AI技术。这些应用场景包括面向员工的自动化与生产力支持、销售漏斗顶端的内容营销自动化,以及面向客户的服务聊天机器人等。
确定自主式AI的适用场景
许多CRM场景都能通过自主式AI实现高影响力赋能。当实施得当时,这项技术将显著提升生产力,优化客户与员工体验。应用领导者应规划将自主式AI整合至面向员工和面向客户的流程中,既为员工提供更优质的服务工具,又直接为客户创造更卓越的体验。
以下是高影响力CRM应用场景示例:
营销领域:整合多源数据上下文,实现规模化个性化内容推送与行动触发,自动化潜在客户培育流程。
■ 聊天机器人:配置直接面向客户的对话式交互界面。凭借自主式AI的自主推理能力、情境评估能力、目标导向策略制定能力及自然语言生成技术,可在销售支持类聊天机器人场景中提供更优用户体验。其响应速度远超当前基于规则的被动式聊天机器人技术。
■目前大多数组织并不要求AI代理100%准确执行流程,而是以人类员工的质量标准作为基准。当AI代理达到或超越人类质量阈值时,企业会将其投入低风险业务场景,同时持续监控质量。关于优质AI代理体验的行业讨论才刚刚兴起(参见注释4)。
高风险应用场景则指对客户产生重大直接影响的行动,通常存在于面向客户的流程中,可能包括:
我们建议当AI代理执行可能改变高风险流程状态的操作时,应设置流程护栏或保持人工介入。这会降低AI代理的"自主性"。
以下是CRM领域采用自主式AI的节奏建议:
■ 销售与服务:自动化销售服务人员培训,优化断点流程或手工流程。在执行需要跨系统复杂推理的销售订单和服务事务时,这类传统上需要应用集成的任务可通过该方法实现自动化。
■ 服务与数字商务:生成、维护并交付知识与产品描述。实现跨多知识源与内容源的索引编制。实现客户自助服务的自动化。
然而,CRM中的代理型人工智能仍处于应用初期。由于早期应用已显示出显著的成本效益和改善客户体验的强大潜力,企业可能会先在低风险的CRM流程中部署代理型人工智能。面向员工的流程通常比面向客户的流程风险更低。非监管行业的CRM流程比受监管行业的流程风险更低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值