自学人工智能时记下的笔记系列(6)---了解一下目前人工智能在金融领域的实际应用情况。虽然人工智能已经有很多算法、模型,但不是所有的模型和算法都适合在金融领域使用。机器学习在金融领域已经有了一定的发展和成效,但仍属于探索阶段,目前发展成熟(即有效)的模型还是有限。
此外,数据是金融领域的优势,也是机器学习的基础。由于网络的兴起,目前网络上的数据积累已经很多了,股票数据、卫星数据、网络新闻等等,公开vs不公开,付费vs免费数据,可以自行扒数据,也可以购买数据服务。数据服务常见的有:收集、清理、结构化、打包、积累等。
目前比较常见的人工智能+金融模式:股票模式识别、交易系统设计、研报自动化分析、智能投资顾问。
金融分析常用数据来源:
- 个体数据:社交媒体、新闻、网页、个人数据
- 商业过程:交易数据、公司内部数据、财务数据
- 监测数据:卫星数据、地理信息。(大型期货、大宗商品交易可能会用到卫星数据。)
- 政府数据:国家统计数据、宏观数据、国际组织数据
哪些算法在金融领域应用比较多?
- 监督学习(线性回归、分类)的算法应用最多。
- 无监督学习、深度学习、强化学习的算法在金融的应用不太多。
量化金融领域的使用:
- 自动交易:根据部署好的买卖指令,实现自动交易
- 传统机器学习-监督学习:根据历史价格找到最佳模型,预测未来收益率
- 传统机器学习-无监督学习:对数据进行分类、量化交易模型的主成分分析等。
基于大数据的金融工作流&#x