动态规划

最大连续子段和

​ 思路: d p [ i ] dp[ i ] dp[i] 表示以 a [ i ] a[ i ] a[i] 结尾的最大连续子段和,那么 d p [ i ] = M a t h . m a x ( d p [ i − 1 ] + a [ i ] , a [ i ] ) dp[ i ] = Math.max( dp[i - 1] + a[ i ] , a[ i ]) dp[i]=Math.max(dp[i1]+a[i],a[i]) ,如果 d p [ i − 1 ] dp[i - 1] dp[i1] 是小于 0 0 0的,那么最大值就是 a [ i ] a[ i ] a[i],否则,最大值就是 d p [ i − 1 ] + a [ i ] dp[i - 1] + a[ i ] dp[i1]+a[i],最终结果就是 d p dp dp 数组中的最大值。

public static int len(int[] a){
    int[] dp = new int[a.length];
    dp[0] = Math.max(0,a[0]);
    int max = Integer.MIN_VALUE;
    for(int i=1;i<a.length;i++){
        dp[i] = Math.max(dp[i-1]+a[i],a[i]);
        if(max<dp[i])
            max = dp[i];
    }
    return max;
}

L C S LCS LCS 最长公共子序列

​ 思路:

​ 1.用一个数组 d p [ i ] [ j ] dp[ i ][ j ] dp[i][j] 表示 S S S 字符串中前 i i i 个字符与 T T T 字符串中前 j j j 个字符的最长上升子序列,那么 d p [ i + 1 ] [ j + 1 ] dp[ i+1 ][ j+1 ] dp[i+1][j+1] 就是S 字符串中前 i+1 个字符与 T T T 字符串中前 j + 1 j+1 j+1 个字符的最长上升子序列;

​ 2.如果此时 S S S 中的第 i + 1 i+1 i+1 个字符与 T T T 中的第 j + 1 j+1 j+1 个字符相同,那么 d p [ i + 1 ] [ j + 1 ] = d p [ i ] [ j ] + 1 dp[ i+1 ][ j+1 ] = dp[ i ][ j ] + 1 dp[i+1][j+1]=dp[i][j]+1;

​ 3.如果此时 S S S 中的第 i + 1 i+1 i+1 个字符与 T T T 中的第 j + 1 j+1 j+1 个字符不同,那么 d p [ i + 1 ] [ j + 1 ] = M a t h . m a x ( d p [ i + 1 ] [ j ] , d p [ i ] [ j + 1 ] ) dp[ i+1 ][ j+1 ] = Math.max ( dp[ i+1 ][ j ] , dp[ i ][ j+1 ] ) dp[i+1][j+1]=Math.max(dp[i+1][j],dp[i][j+1]);

public static int LCS(String s,String t){
    int[][] dp=new int[s.length()+1][t.length()+1];
    for(int i=1;i<=s.length();i++){
        for(int j=1;j<=t.length();j++){
            if(s.charAt(i-1)==t.charAt(j-1))
                dp[i][j]=dp[i-1][j-1]+1;
            else
                dp[i][j]=Math.max(dp[i][j-1],dp[i-1][j]);
        }
    }
    return dp[len1][len2];
}

L C S LCS LCS 最长公共子序列及其个数

​ 思路:

​ 1.在最长公共子序列的基础上稍作修改即可;

​ 2.如果 s [ i ] = = t [ j ] s[ i ] == t[ j ] s[i]==t[j],此时公共子序列的长度增加 1 1 1 ,其子序列个数至少与 n u m [ i − 1 ] [ j − 1 ] num[ i-1 ][ j-1 ] num[i1][j1] 的个数相同,所以个数不变;

​ 3.如果 d p [ i ] [ j ] = = d p [ i ] [ j − 1 ] dp[ i ][ j ] == dp[ i ][ j-1 ] dp[i][j]==dp[i][j1] (即两者的长度相同,但内容不同或顺序不同) 则 n u m [ i ] [ j ] + = n u m [ i ] [ j − 1 ] num[ i ][ j ] += num[ i ][ j-1 ] num[i][j]+=num[i][j1];

​ 4.如果 d p [ i ] [ j ] = = d p [ i − 1 ] [ j ] dp[ i ][ j ] == dp[ i-1 ][ j ] dp[i][j]==dp[i1][j], 则 n u m [ i ] [ j ] + = n u m [ i − 1 ] [ j ] num[ i ][ j ] += num[ i-1 ][ j ] num[i][j]+=num[i1][j]

​ 5.如果 d p [ i ] [ j ] = = d p [ i − 1 ] [ j − 1 ] dp[ i ][ j ] == dp[ i-1 ][ j-1 ] dp[i][j]==dp[i1][j1], 则 n u m [ i ] [ j ] − = n u m [ i − 1 ] [ j − 1 ] num[ i ][ j ] -= num[ i-1 ][ j-1 ] num[i][j]=num[i1][j1] ;(因为如果 3 3 3 4 4 4 同时触发则会出现加了两次 n u m [ i − 1 ] [ j − 1 ] num[ i-1 ][ j-1 ] num[i1][j1] 的情况,所以要剪掉);

public static void LCS(String a,String b){
    char[] s = s.toCharArray();
    char[] t = b.toCharArray();
    int[][] dp = new int[s.length+1][t.length+1];
    int[][] num = new int[s.length+1][t.length+1];
    for(int i=0;i<s.length;i++) num[i][0] = 1;
    for(int i=0;i<t.length;i++) num[0][i] = 1;
    for(int i=1;i<=s.length;i++) {
        for(int j=1;j<=t.length;j++) {
            if(s[i-1]==t[j-1]) {
                dp[i][j] = dp[i-1][j-1] + 1;
                num[i][j] = num[i-1][j-1];
            }else {
                dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
            }
            if(dp[i][j]==dp[i][j-1])
                num[i][j] = num[i][j] + num[i][j-1];
            if(dp[i][j]==dp[i-1][j])
                num[i][j] = num[i][j] + num[i-1][j];
            if(dp[i][j]==dp[i-1][j-1])
                num[i][j] = num[i][j] - num[i-1][j-1];
            num[i][j] %= N;
        }
    }
}

L I S LIS LIS 最长上升子序列

动态规划方法 O ( n 2 ) O( n_2 ) O(n2)

​ 思路:用 d p dp dp 数组表示以 i i i 结尾的最长上升子序列,那么 d p [ i ] dp[ i ] dp[i] 的结果就为:前 i i i 个比 a [ i ] a[ i ] a[i] 小的数中 d p dp dp 数组中的最大值 + 1 + 1 +1 d p dp dp 数组中的最大值,便是此序列的最长上升子序列长度;

public static int LIS(int[] a){
    int[] dp = new int[a.length+1];
    dp[0] = 0;
    int num  = 0;
    for(int i=1;i<a.length;i++) {
        int max = 0;//前面的最大dp值
        for(int j=1;j<=i;j++) {//判断前面的数
            if(a[i]>a[j]) {//保证上升
                if(dp[j]>max)
                    max = dp[j];//在保证上升的前提之下,找到最大值
            }
        }
        dp[i] = max+1;//长度加上i本身
        num = Math.max(max, dp[i]);
    }
    return num;
}
贪心方法 O ( n l o g 2 n ) O( nlog_2n ) O(nlog2n)

​ 思路:用一个数组 f f f 表示上升子序列的长度为 i i i 时的末尾元素最小值,用二分法查找 a [ i ] a[ i ] a[i] 可以放入 f f f 数组中的最优位置,并将其放入,记录 f f f 数组用到的长度即为最长上升子序列的长度;

public static int number(int[] a){
    int[] f = new int[a.length];//长度为i的上升子序列的末尾元素最小值为f[i]
    int length = 0;
    for(int i=0;i<n;i++) {
        int l = 0;
        int r = length;
        while(l<r) {
            int mid = (l+r+1)>>1;
            if(f[mid]>=a[i])
                r = mid - 1;
            else
                l = mid;
        }
        length = Math.max(length, r+1);
        f[r+1] = a[i];
    }
    return length;
}

最大连续子矩阵和

​ 思路:

​ 1.将矩阵中的每一个元素的值都转变为它同一列前 i − 1 i - 1 i1 行的元素和,那么便可以通过前缀和数组获得到任意上下区间中的元素和,也就变为了一维问题;

​ 2.求这一个上下区间内的最大连续子段和,也就是找上下区间固定的所有子矩阵的最大连续和;

public static int subMaxMatrix(int[][] g){
    for(int i=1;i<=g.length;i++)
        for(int j=1;j<=g[i].length;j++)
            g[i][j] += g[i-1][j];//前缀和初始化
    int ans = Integer.MIN_VALUE;
    for(int start=1;start<=g.length;start++){
        for(int end=1;end<=g[i].length;end++){//枚举start行~end行
            int dpi = 0;
            for(int col = 1;col<=g[i].length;col++){
                int ai = g[end][col] - g[start-1][col];
                dpi = Math.max(dpi+ai,ai);
                ans = Math.max(dpi,ans);
            }
        }
    }
    return ans;
}

背包专题

01 01 01 背包

题目链接:小明的背包1 - 蓝桥云课 (lanqiao.cn)

图片描述

​ 思路:

​ 1.用一个二维数组 d p dp dp 表示考虑前 i i i 件物品,在背包容量为 j j j 的时候能取得的最大价值,当 i i i 或者 j j j 0 0 0 的时候, d p dp dp 值为 0 0 0

​ 2.每一件物品都可以有两个情况——选 o r or or 不选,如果不选此件物品,那么 d p dp dp 的结果与考虑前 i − 1 i - 1 i1 件物品在相同背包容量时能取得的最大价值相同,如果选择,那么 d p dp dp 的结果为这件物品能带来的价值 + + + 考虑前 i − 1 i - 1 i1 件物品,在背包容量为(放入这件物品后剩余大小)时能取到的最大价值,两个取最大值;

​ 3.状态转移方程为: d p [ i ] [ j ] = M a t h . m a x ( d p [ i − 1 ] [ j ] , v [ i ] + d p [ i − 1 ] [ j − w [ i ] ] ) dp[ i ][ j ] = Math.max( dp[ i-1 ][ j ] , v[ i ] + dp[ i-1 ][ j-w[ i ]] ) dp[i][j]=Math.max(dp[i1][j],v[i]+dp[i1][jw[i]])

​ 4.最终结果即为 d p [ n ] [ m ] dp[ n ][ m ] dp[n][m]

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner sc =  new Scanner(System.in);
		int n = sc.nextInt();//商品数量
		int m = sc.nextInt();//背包的容量
		int[] w = new int[n+1];
		int[] v = new int[n+1];
		for(int i=1;i<=n;i++) {
			w[i] = sc.nextInt();//体积
			v[i] = sc.nextInt();//价值
		}
		int[][] dp = new int[n+1][m+1];//1 ~ n
		for(int i=0;i<=n;i++) {
			for(int j=0;j<=m;j++) {
				if(i==0 || j==0)
					dp[i][j] = 0;
				else {
					if(j<w[i]) {
						dp[i][j] = dp[i-1][j];
					}else {//j>=w[i]
						dp[i][j] = Math.max(dp[i-1][j], v[i]+dp[i-1][j-w[i]]);	
					}
				}
			}
		}
		System.out.println(dp[n][m]);
	}
}

优化(二维转一维)

​ 思路:

​ 1.在二维数组赋值的过程中, d p [ i ] [ j ] dp[ i ][ j ] dp[i][j] 的值只与第 i − 1 i - 1 i1 层的 d p dp dp 值有关,便可以用一维 d p dp dp 数组表示每一层在背包容量为 j j j 时取得的最大价值;

​ 2.在内层循环进行处理时,会用到 d p [ i − 1 ] [ j − w [ i ] ] dp[ i-1 ][ j-w[ i ]] dp[i1][jw[i]] 的值,但是因为内层循环是从小到大的,所以在用到 d p [ i − 1 ] [ j − w [ i ] ] dp[ i-1 ][ j-w[ i ]] dp[i1][jw[i]] 的值时, d p [ j − w [ i ] ] dp[ j - w[ i ]] dp[jw[i]] 已经表示为第 i i i 层的值,而不是第 i − 1 i - 1 i1 层的值,所以内层循环需要从大到小执行;

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int m = sc.nextInt();
		int[] w = new int[n+1];
		int[] v = new int[n+1];
		for(int i=1;i<=n;i++){
			w[i] = sc.nextInt();
			v[i] = sc.nextInt();
		}
		int[] dp = new int[m+1];
		for(int i=0;i<n+1;i++){
			for(int j=m;j>=w[i];j--){
				dp[j] = Math.max(dp[j],dp[j-w[i]]+v[i]);
			}
		}
		System.out.println(dp[m]);
	}
}
完全背包

题目链接:小明的背包2 - 蓝桥云课 (lanqiao.cn)

image-20230521234451809

​ 思路:

​ 1.基本原理与 01 01 01 背包相同;

​ 2.每一件物品都有无限个,其实并不是无限个,因为背包的容量是有限的,即每一件物品的最多数量为 j / w [ i ] j / w[ i ] j/w[i]

​ 3.放入第 i i i 件商品后,仍然可以放第 i i i 件物品,那么剩余体积能带来的最大价值为 d p [ i ] [ j − w [ i ] ] dp[ i ][ j-w[i]] dp[i][jw[i]]

​ 4.状态转移方程为: d p [ i ] [ j ] = M a t h . m a x ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − w [ i ] ] + p [ i ] ) dp[ i ][ j ] = Math.max( dp[ i-1 ][ j ] , dp[ i ][ j-w[ i ]] + p[ i ] ) dp[i][j]=Math.max(dp[i1][j],dp[i][jw[i]]+p[i])

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        int v = scan.nextInt();
        int dp[][] = new int[n+1][v+1];
        int w[] = new int[n+1];
        int p[] = new int[n+1];
        for(int i = 1 ; i <=n;i++) {
            w[i] = scan.nextInt();
            p[i] = scan.nextInt();
        }
        for(int i =1; i <= n; i++) {
            for(int j =1; j <=v; j++) {
                if(w[i]<=j) {
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j-w[i]]+p[i]);//直接考虑还能放多少价值
                }else {
                    dp[i][j]=dp[i-1][j];
                }
            }
        }
        System.out.println(dp[n][v]);
    }
}
多重背包

题目链接:小明的背包3 - 蓝桥云课 (lanqiao.cn)

image-20230521234520751

​ 思路:

​ 1.在 01 01 01背包的基础上增加了每一件物品的数量,并且数量是指定的;

​ 2.多一层循环判断第 i i i 件物品放多少个,并且不能超过背包容量 j j j ,如果放入 k = 0 k = 0 k=0 件,即表示不放;

import java.util.*;

public class Main{
    static int n,v;
    static int[] w=new int[1010];
    static int[] c=new int[1010];
    static int[] s=new int[1010];
    static int[][] dp=new int[2020][2020];
    public static void main(String[] args) {
        Scanner sc=new Scanner(System.in);
        n=sc.nextInt();
        v=sc.nextInt();
        for(int i=1;i<=n;i++) {
            w[i]=sc.nextInt();
            c[i]=sc.nextInt();
            s[i]=sc.nextInt();
        }
        for(int i=1;i<=n;i++) {
            for(int j=0;j<=v;j++) {
                for(int k=0;k<=s[i]&&k*w[i]<=j;k++) {
                    dp[i][j]=Math.max(dp[i][j], dp[i-1][j-k*w[i]]+k*c[i]);
                }
            }
        }
        System.out.println(dp[n][v]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值