#0704. 二分查找
难度:简单
题目:给定一个 n
个元素有序的(升序)整型数组 nums
和一个目标值 target
,写一个函数搜索 nums
中的 target
,如果目标值存在返回下标,否则返回 -1。
示例1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
解法一: 基础解法
public static int search(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] == target) {
return i;
}
}
return -1;
}
二分查找解法【重点】
二分查找的原理就是设置left与right两个索引,并通过两个索引的中间值middle 分别从最左侧与最右侧向中间查找目标值,通过一步步缩小范围最终找到目标值。
二分查找也可分为两种解法,区别在于左右区间的设置不同。
二分查找解法1:[left,right]
public static int search(int[] nums, int target) {
int left = 0 ;
int right = nums.length -1 ; //区间右闭合,right索引从最右侧数开始
while(left <= right) { // right索引有意义,所以符号为 <=
int middle = (left + right) / 2 ;
if (nums[middle] > target) {
right = middle - 1 ;
} else if(nums[middle] < target) {
left = middle + 1 ;
} else {
return middle;
}
}
return -1;
}
注意:
- while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
- if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
二分查找解法2:[left,right)
public static int search(int[] nums, int target) {
int left = 0 ;
int right = nums.length; // 右开区间,right索引从数组外开始
while(left < right) { // right无意义,所以符号为 <
int middle = (left + right) / 2 ;
if (nums[middle] > target) {
right = middle; // 时刻记得right为开区间索引值,是不能被取到的
} else if(nums[middle] < target) {
left = middle + 1 ;
} else {
return middle;
}
}
return -1;
}
注意:
- while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
- if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
总结:
二分法的两种解法是在数学意义上的不同,要充分理解区间定义不同所带来的代码方面的差异。
最后附上LeetCode本题的链接,完全理解了的小伙伴可以去尝试一下这道题:
https://leetcode-cn.com/problems/binary-search/