LeetCode刷题系列之数组--0704.二分查找(JAVA版本)

这篇博客详细介绍了LeetCode中的0704题——二分查找。通过示例解释了如何在一个有序数组中使用二分查找法寻找目标值,分别阐述了两种不同的二分查找实现方式,并强调了不同区间设置对解法的影响。文章鼓励读者深入理解二分查找的原理并提供了题目链接供实践。
摘要由CSDN通过智能技术生成

#0704. 二分查找
难度:简单
题目:给定一个 n个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

解法一: 基础解法

public static int search(int[] nums, int target) {
   for (int i = 0; i < nums.length; i++) {
       if (nums[i] == target) {
           return i;
       }
   }
   return -1;
}

二分查找解法【重点】

二分查找的原理就是设置left与right两个索引,并通过两个索引的中间值middle 分别从最左侧与最右侧向中间查找目标值,通过一步步缩小范围最终找到目标值。

二分查找也可分为两种解法,区别在于左右区间的设置不同。

二分查找解法1:[left,right]

public static int search(int[] nums, int target) {
   int left = 0 ;
   int right = nums.length -1 ;  //区间右闭合,right索引从最右侧数开始
   while(left <= right) { // right索引有意义,所以符号为 <=
       int middle = (left + right) / 2 ;
       if (nums[middle] > target) {
          right = middle - 1 ;
       } else if(nums[middle] < target) {
           left = middle + 1 ;
       } else {
           return middle;
       }
   }
   return -1;
}

注意:

  • while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
  • if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1

二分查找解法2:[left,right)

public static int search(int[] nums, int target) {
    int left = 0 ;
    int right = nums.length; // 右开区间,right索引从数组外开始
     while(left < right) { // right无意义,所以符号为 <
        int middle = (left + right) / 2 ;
        if (nums[middle] > target) {
            right = middle;  // 时刻记得right为开区间索引值,是不能被取到的
        } else if(nums[middle] < target) {
            left = middle + 1 ;
        } else {
            return middle;
        }
    }
    return -1;
}

注意:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]

总结:
        二分法的两种解法是在数学意义上的不同,要充分理解区间定义不同所带来的代码方面的差异。
        最后附上LeetCode本题的链接,完全理解了的小伙伴可以去尝试一下这道题:
        https://leetcode-cn.com/problems/binary-search/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值