《算法竞赛进阶指南》0x31 T2 阶乘分解

本文介绍了如何对整数N的阶乘进行质因数分解,详细阐述了三种不同的算法,从暴力求解到优化算法O(n×n)再到最优解O(n×logn),并提供了每种算法的思路和代码实现。通过实例展示了如何计算阶乘分解后的质因数及其出现次数,适合算法竞赛进阶学习。
摘要由CSDN通过智能技术生成

题目传送门

题目描述

给定整数 N N N ,试把阶乘 N ! N! N! 分解质因数,按照算术基本定理的形式输出分解结果中的 p i p_i pi c i c_i ci即可。

输入格式

一个整数N。

输出格式

N ! N! N!分解质因数后的结果,共若干行,每行一对 p i , c i p_i,c_i pi,ci,表示含有 p i c i p_i^{c_i} pici项。按照 p i p_i pi从小到大的顺序输出。

数据范围

1 ≤ N ≤ 1 0 6 1≤N≤10^6 1N106

输入样例

5

输出样例

2 3
3 1
5 1

样例解释

5 ! = 120 = 2 3 × 3 × 5 5!=120=2^3\times3\times5 5!=120=23×3×5

基础硬件

质数的筛选
质因数分解

题解

算法1:暴力 O ( n ) O(n) O(n)(空间爆炸)

n n n的阶乘算出来,然后质因数分解
n > 20 n>20 n>20就直接炸掉
果断白给

code
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+10;
int n; 
long long p[maxn],c[maxn];
void zhiyinshufenjie(unsigned long long n)
{
	long long m=0;
	for(long long i=2;i<=sqrt(n);i++)
	{
		if(n%i==0)
		{
			p[++m]=i;
			while(n%i==0) n/=i,c[m]++; 
		}
	}
	if(n>1)
	{
		p[++m]=n;
		c[m]++;
	} 
	for(int i=1;i<=m;i++) cout<<p[i]<<' '<<c[i]<<endl;
}
int main()
{
	cin>>n;
	unsigned long long k=1;
	for(int i=1;i<=n;i++)
		k*=i;
	zhiyinshufenjie(k);
	return 0;
}


算法2:稍微不那么暴力 O ( n × n ) O(n\times \sqrt n) O(n×n )

1 − n 1-n 1n的每个数质因子分解,再把结果合并
能抗到 n = 1 0 5 n=10^5 n=105左右了

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+10;
int c[maxn],n;//c用来统计指数出现次数 
void zhiyinshufenjie(int n)
{
	for(int i=2;i<=sqrt(n);i++)
		if(n%i==0)
			while(n%i==0) n/=i,c[i]++;
	if(n>1) c[n]++;
}
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		zhiyinshufenjie(i);
	for(int i=1;i<=n;i++) if(c[i]) cout<<i<<' '<<c[i]<<endl;
	return 0;
}
算法3:正解 O ( n × l o g n ) O(n\times log n) O(n×logn)

n ! n! n!中质因子 p p p的个数就等于 1 − n 1-n 1n每个数包含质因子 p p p的个数之和。在 1 − n 1-n 1n中, p p p的倍数,即至少包含 1 1 1个质因子 p p p(即 1 − n 1-n 1n p p p的倍数)有 ⌊ n / p ⌋ \lfloor n/p \rfloor n/p个。而 p 2 p^2 p2的倍数,即至少包含 2 2 2个质因子 p p p的有 ⌊ n / p 2 ⌋ \lfloor n/p^2 \rfloor n/p2个。不过其中的 1 1 1个质因子已经在 ⌊ n / p ⌋ \lfloor n/p \rfloor n/p里统计过,所以只需要再统计第 2 2 2个质因子,即累加上 ⌊ n / p 2 ⌋ \lfloor n/p^2 \rfloor n/p2个,而不是 2 × ⌊ n / p 2 ⌋ 2\times\lfloor n/p^2 \rfloor 2×n/p2
For example:
对于 n = 4 n=4 n=4 p = 2 p=2 p=2而言
1 − n 1-n 1n中包含2( ⌊ n / p ⌋ \lfloor n/p \rfloor n/p)个数是 p p p的倍数,即2和4,
再来统计 ⌊ n / p 2 ⌋ \lfloor n/p^2 \rfloor n/p2,只有 4 4 4符合条件,按道理来讲,既然前面是 p 2 p^2 p2,那么计数器是不是应该加 2 2 2呢?
并不是这样,在统计 p p p的时候,就已经将 4 4 4的其中 1 1 1个质因子 2 2 2统计过了,所以计数器只需要加 1 1 1,而不需要加 2 2 2
综上所述, n ! n! n中质因子p的个数为 ⌊ n p ⌋ + ⌊ n p 2 ⌋ + ⌊ n p 3 ⌋ + ⋯ + ⌊ n p ⌊ l o g p ∗ n ⌋ ⌋ = ∑ p k ≤ n ⌊ n p k ⌋ \lfloor\frac{n}{p}\rfloor+\lfloor\frac{n}{p^2}\rfloor+\lfloor\frac{n}{p^3}\rfloor+\dots+\lfloor\frac{n}{p^{\lfloor log_p*n\rfloor}}\rfloor=\sum_{p^k\leq n}\lfloor\frac{n}{p^k}\rfloor pn+p2n+p3n++plogpnn=pknpkn

code
#include<bits/stdc++.h>
using namespace std;
bool vis[1000100];
int c[1000100],p[1000100];
int main()
{
	int n,m=0;
	scanf("%d",&n);
	for(int i=2;i<=n;i++) //埃式筛求质数
		if(!vis[i])
		{
			c[++m]=i;
			for(int j=i*2;j<=n;j+=i)
				vis[j]=1;
		}
	for(int i=1;i<=m;i++)//遍历质数
		for(int k=1;;k++)
			if(pow(c[i],k)>n) break;//当超出n的范围,就退出循环
			else p[i]+=n/(pow(c[i],k));//如上述讲解中的公式
	for(int i=1;i<=m;i++)
		if(p[i])
			printf("%d %d\n",c[i],p[i]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值