王雪松,同济大学交通运输工程学院教授、博士生导师。主要从事交通事故调查、事故统计分析、道路设施安全、交通安全管理、交通安全规划、驾驶行为研究、车辆主动安全研究。主持了国家级、省部级科研项目85项,发表学术论文300余篇。担任Accident Analysis and Prevention编委、《中国公路学报》副主编,是爱思唯尔中国高被引学者,任美国交通研究委员会(TRB)Simulation and Measurement of Vehicle and Operator Performance (AND30)、TRB Safety Data, Analysis and Evaluation (ANB20)委员,上海交通工程学会交通安全专业委员会主任委员。
0 引言
世界卫生组织在2018年的报告中显示,全世界每年因道路交通事故造成的死亡人数高达135万人,且交通事故是致人死亡的第八大原因。道路交通事故的发生通常包含主观因素及客观因素两个部分,其中主观因素通常指人为因素;客观因素包括车辆、道路、环境及管理等。道路交通系统中93%以上的交通事故与人因有关,驾驶人在交通环境中的决策和行为与交通安全息息相关,而与驾驶风险直接相关的人的因素即驾驶行为与驾驶人个体特征。
目前从驾驶人角度研究驾驶风险(下文简称“驾驶风险”)越来越受到研究者的关注,但已有研究内容通常针对特定主题,缺乏从酒驾、药驾、分心驾驶、疲劳驾驶等不同危险驾驶行为分类的宏观角度总结由人因导致驾驶风险的研究。同时,现有研究成果缺乏国内外在驾驶风险领域的研究进展对比,通过对比可直观了解中国尚未得到充分研究的研究主题以及现有研究与国外前沿领域的差距。
1 数据来源及分析方法
与驾驶人直接相关的风险因素主要为驾驶行为(如图1所示),因此,笔者在Web of Science 核心合集数据库中针对关键词“drivingrisk and driving (driver) behavior”进行英文文献检索,共获得3406篇英文期刊论文、会议论文、研究综述及会议摘要,共涉及8684位作者及6018个关键词。研究所用分析软件为VOSviewer,该软件由荷兰莱顿大学的vanEck等开发,该软件基于相似度可视化(Visualization of Similarities,VOS)技术对文献知识单元进行可视化分析,利用共现矩阵进行布局生成知识图谱。
图1 驾驶风险相关因素
2 文献统计分析
2.1 文献年度分布统计
某一领域学术论文数量的变化情况是反映该研究领域发展趋势的重要指标,同时体现出该领域知识范围的变化。截至2019年,驾驶风险领域共计发表相关学术论文3351篇,其数量变化趋势如图2所示。由趋势可见,对驾驶风险的研究近年来愈发受到重视且成果丰硕。
图2 驾驶风险领域文献出版数量随时间变化情况(1986~2019年)
2.2 国家及地区统计
本研究收集的文献共涉及90个国家和地区,图3展示了其中56个有5篇及以上相关成果的国家/地区在时间维度上的分布,颜色越深表示研究时间越早;网络中的节点大小表示该国家/地区的发文数量。由图3可知,驾驶风险领域的研究早期以北欧国家(如瑞典、芬兰)、新西兰、新加坡等地为主,随后在美国、加拿大及澳大利亚等国快速发展。据文献数量统计来看,美国文献总量达1102篇,位居首位,占成果总数的27.27%;其篇均被引22.8次,分别为澳大利亚和中国大陆的1.2倍、2.3倍。分析可知,欧美等国在驾驶风险领域起步早,积累了较为丰富的研究成果;中国作为新生科学力量之一,近年来在驾驶风险研究领域贡献了较多的研究成果。
图3 文献机构归属国家及地区
2.3 来源出版物分析
对来源出版物(2000年至今)进行可视化分析,在469个出版物中,有59个出版物的驾驶风险相关研究发文量在5篇及以上,统计结果如图4所示。由图4可知:研究者在投稿时普遍选择交通领域传统出版物,如Accident Analysis & Prevention,Transportation Research Part F,TrafficInjury Prevention,Journalof Safety Research以及Transportation Research Record等;此外,医学(包括公共卫生、环境和职业卫生等)领域出版物如Addiction,BMC Public Health,Sleep,Injury Prevention等也是部分研究者的选择。
图4 文献主要来源出版物(2000年至今)
2.4 文献共被引分析
文献共被引知识图谱展示了科学知识基础与研究前沿,图5中节点大小表示某文献被引用的总频次,节点越大则表明该文献被引频次越高,影响力越大;节点颜色表示文献所属的聚类,同一聚类的文献在研究主题上具有较大的相似性。由图5可知,上述筛选后所得文献共聚为6个不同颜色的群集。
图5 驾驶风险研究文献共被引分析
(1) 群集1(红色):驾驶风险问卷研究
群集1为该网络中最大的群集,其中占有重要地位的文章包括Reason等在1990年发表的文章Errors and violations on theroads: a real distinction?。该文章首次提出利用驾驶人行为问卷(Driver Behaviour Questionnaire,DBQ)对驾驶人危险驾驶行为与交通事故之间的关系进行评估。问卷共包含50个题项,被试者需对每项描述进行0-5分打分评估(0表示从未发生,5表示总是发生)。通过主成分分析法提取3个主要因素,分别为故意违法行为、危险错误行为以及过失或失误行为。
另一个引人注目的研究为Ajzen在1991年提出的计划行为理论(Theory of Planned Behavior,TPB)。该理论认为人类社会行为受行为意向(Behavior Intention)所影响,且行为意向由态度(Attitude)、主观规范(Subjective Norm)以及知觉行为控制(Perceived Behavioral Control)3个要素共同控制,见图6。TPB的研究通常以问卷调查的形式收集参与者对所研究问题的态度或观点,为探究交通出行者行为提供了大量的信息,这些信息可用于理解出行者的行为选择,或为不同行为制定有效干预措施提供帮助。
图6 计划行为理论
(2) 群集2(青色):青少年及新手驾驶人驾驶风险
群集2是该网络中的最小群集,也是与群集1相邻最近的群集,表明该群集研究与群集1具有较高的相关性。该部分主要研究内容为针对青少年驾驶人及新手驾驶人的研究。Williams在2003年发表的文章Teenagedrivers: patterns of risk中综合分析了青少年驾驶人的高风险驾驶环境(如夜间驾驶、酒驾等)及其事故风险,并提出以驾驶人的不同风险模式为基础设计驾照分级制度可促进青少年驾驶人选择低风险驾驶并减少高风险驾驶的发生。
Mayhew等在2003年发表的文章Changes incollision rates among novice drivers during the firstmonths of driving中针对新手驾驶人随时间变化的事故数据开展研究,发现新手驾驶人在获得驾照的前6个月里事故率降低最快,年轻新手驾驶人的单车事故及夜间事故的比例显著高于年长的新手驾驶人。该研究也证实驾照分级制度是保障新手驾驶人行车安全的有效方式。
(3) 群集3(绿色):分心驾驶及手机使用风险研究
群集3是图5网络中第2大群集。在该群集中,重点文献之一为Redelmeier等于1997年发表在新英格兰医学期刊中的文章Association between cellular-telephonecalls and motor vehicle collisions。该研究通过分析699位拥有移动电话并涉及交通事故(造成重大财产损失但无人员伤亡)的驾驶人在事故当天及前1周的通话记录账单,利用病例交叉设计(Case–crossoverDesign)的方法对比分析了驾驶人的不同手机使用特征(使用时间、持续时长、呼入/呼出电话等)与交通事故风险之间的关系。文章研究结果首次量化了手机使用与事故风险之间的关系,即驾驶时使用手机的事故风险约为没有使用手机的4倍,且这种相对风险与血液酒精含量达到法定上限后驾车的风险类似。
该群集的另一篇重点文献为Klauer等于2014年发表的文章Distracted driving and risk ofroad crashes among novice and experienced drivers。该研究利用美国百辆车(100-Car)自然驾驶研究数据集与青少年自然驾驶研究(NaturalisticTeenage Driving Study)数据集分别获取了熟练驾驶人及新手驾驶人的自然驾驶数据。研究者通过对驾驶人在车内的10类次任务(SecondaryTask)进行编码(如打电话、发短信/浏览网页、调节收音机/空调、喝饮料、吃东西、看路边物体等),利用混合效应Logistic回归模型探究了驾驶人发生紧急事件(Crashand Near-crash)与分心次任务类别的关系,并利用混合效应线性回归模型评估了新手驾驶人及熟练驾驶人随时间变化出现驾驶分心的趋势。
(4) 群集4(蓝色):驾驶人健康与驾驶风险
群集4是该网络中与群集1相邻最远的群集之一。本群集的研究侧重点为驾驶人嗜睡、药物或酒精等的使用与驾驶风险之间的关系。Connor等在2002年发表的文章Driver sleepiness and risk of serious injury to car occupants: population based case control study中,通过访谈形式分别对571名涉及伤亡交通事故的驾驶人及588名被招募作为对照组的普通驾驶人进行调查。访谈内容包括驾驶人个人信息、出行及驾驶习惯,以及利用Stanford嗜睡量表及Epworth嗜睡量表对驾驶人的嗜睡情况进行评估。利用无条件Logistic回归模型进行分析发现驾驶人的睡眠时长、凌晨行车及重度嗜睡均会增加事故发生的风险。该研究首次对嗜睡及事故之间的关系进行量化,为后续探究驾驶人睡眠状况与事故风险提供了新的研究方向。
Drummer等在2004年发表的文章The involvement of drugs indrivers of motor vehicles killed in Australian road traffic crashes中利用多中心病例对照研究(Multi-center Case-control Study)的手段及Logistic分析方法,探究了酒精及药物(如麻醉性药物、精神性药物等)使用与驾驶人交通事故死亡之间的关系。此后,众多有毒驾、药驾、酒驾等内容的研究开始涌现,利用病例对照方法从毒理学等角度开展与事故、伤害、过失等的相关分析。
(5) 群集5(橙色):驾驶人年龄特征与事故风险分析
本群集的重点研究为McGwin等在1999年发表的文章Characteristics of trafficcrashes among young, middle-aged, and older drivers。该研究利用美国阿拉巴马州警方所提供的1996年全年交通事故记录数据,将驾驶人年龄划分为青年、中年与老年3个区间。通过对不同年龄阶段驾驶人的事故责任、事故形态、道路及环境特征、驾驶行为及饮酒状态等进行差异性分析,发现年轻人发生事故的主要原因是喜欢冒险和缺乏驾驶技能,而老年驾驶人更倾向于避免不安全的驾驶状况(如疲劳驾驶)。但由于老年驾驶人的感知能力通常因年龄受到影响,且其对交通流的判断、反应能力会下降,从而导致其驾驶安全优势被抵消。该研究首次发现老年人倾向于规避风险因素。
(6) 群集6(紫色):事故致因及事故数据分析方法
群集6也是该网络中与群集1相邻最远的另一群集,表明其与群集1中有关驾驶行为风险研究的相关度较低,该群集主要研究内容为事故致因及事故数据分析方法。其重点研究包括Lord等于2010年对当下针对事故频率数据的不同分析方法进行回顾,并阐述各种方法的优势及不足。该研究表明,随机参数与有限混合模型的应用在很大程度上提高了研究者对事故致因的理解。作者提出,将新方法与更详细的事故数据相结合进行分析是未来事故分析领域发展的关键。
Savolainen等在2011年综述了机动车事故伤害严重程度统计分析领域的研究进展和研究思路,并对研究方法的未来发展方向进行探讨。该研究提出当前研究领域的4大研究挑战:事故伤害严重度的时空分析尚未深入,解决事故伤害严重度数据的解释变量内生性问题尚停留在起步阶段,事故漏报对模型分析的潜在影响有待探究,以及未来可能出现的新型事故伤害数据将会带来许多新的方法上的挑战。这些研究不仅总结了以往研究中在方法层面的精髓,同时对未来的研究方向提供了具有建设性的建议。
2.5 关键词共现分析
关键词共现分析常用作利用高频关键词来描述当前领域的研究热点,有助于识别在知识领域内出版物中使用的重要关键词,并对该领域的主要研究主题提供见解。共现关系网络如图7所示,结果显示,围绕驾驶风险进行的研究主要以人因分析为主,核心主题包括事故、酒驾、年轻驾驶人、驾驶行为、老年驾驶人、分心驾驶、疲劳驾驶等。
图7 驾驶风险研究文献关键词共现分析
(1) 群集1(红色):酒驾、药驾交通事故分析
根据世界卫生组织2019年公布的数据显示,因交通事故造成的死亡中有5%~35%与酒精相关。研究酒驾数据对于了解问题的严重性以及评估和预防酒后驾车的措施效果十分必要。中国有关酒驾的研究主要集中在分析酒驾事故数据中驾驶人个人属性特征、饮酒对驾驶表现的影响、利用驾驶行为对酒驾进行检测,部分研究者对中国道路交通法规中酒驾处罚条例的实施效果也相应进行探究。但整体而言,中国利用驾驶模拟器试验、实车试验或自然驾驶数据开展饮酒驾驶人的驾驶行为及风险量化评估分析较为缺乏。
图8 酒驾、药驾(图片来自网络)
而相比酒驾而言,药驾(包括毒驾)所带来的风险更加难以量化,这与药品使用的隐蔽性及检测的复杂性有关。中国在药驾方面的研究较少,司法部司法鉴定科学技术研究所卓先义曾比较了上海、苏州及无锡三地在2007~2008年间涉及交通事故或违法的机动车辆驾驶人的精神药物使用情况,结果表明所检测的10002名驾驶人中,有10.2%的药物(不包含酒精)检测呈阳性。由于药驾在事故及违法驾驶人群体中的普遍性,有必要开展药物(包括毒品)使用对驾驶人行为、驾驶表现、认知能力等方面的影响研究,通过量化药物使用为驾驶人带来驾驶风险及事故风险的研究来指导相关法律法规的制定和修订,并在未来开展对药驾政策实施的效果评估。
(2) 群集2(蓝色):年轻及新手驾驶人驾驶行为与心理分析
1)年轻驾驶人
年轻驾驶人在道路交通事故中伤亡的比例较高。据澳大利亚事故数据显示,年轻驾驶人(17~25岁)占持驾驶证总人数的10%~15%,但澳大利亚因道路交通事故死亡的人数中约25%为年轻驾驶人及其乘客。研究表明,导致年轻驾驶人事故的五大危险因素包括:超速行驶、酒驾、未使用安全带、疲劳驾驶及分心驾驶。
公安部交通管理局发布的数据显示,中国2019年全国机动车驾驶人达4.35亿人,其中18-25岁的年轻驾驶人占总数的12.18%,接近5300万人。中国有关年轻驾驶人的研究成果主要集中在驾驶人的分心行为、事故风险、反应能力评估及自我汇报驾驶行为与驾驶模拟器试验驾驶行为差异的分析等。北京航空航天大学鲁光泉等人利用驾驶模拟器试验探究了年轻驾驶人在L3级自动驾驶水平中的接管反应特性,认为次任务增加了驾驶人的接管反应时间,在前方有障碍物的条件下接管反应时间会更短,且驾驶人更倾向于采用制动与转向相结合的方式避撞。但现有文献针对年轻驾驶人的交通事故特征、危险驾驶行为(如酒驾、疲劳驾驶)、年轻驾驶人管理等方面的研究与国外相比仍显不足,且中国有关父母及朋辈对年轻驾驶人的影响作用研究较为缺乏,对不同地域文化差异下的年轻驾驶人行为风格差异也有待深入研究。
2)新手驾驶人
有关新手驾驶人的研究内容包括新手驾驶人驾驶培训、视觉搜索策略、风险感知能力、风险驾驶行为、事故风险等方面的分析。国外研究中常将“年轻驾驶人”与“新手驾驶人”合并为“年轻新手驾驶人”进行研究,但随着社会经济的发展,越来越多的中年甚至老年驾驶人也有学习驾驶机动车辆出行的需求,而针对该群体的研究十分匮乏。
中国在新手驾驶人研究中开展了新老驾驶人受外界影响下(如情景愤怒、车辆碰撞预警系统干预等)的驾驶行为、驾驶表现及风险感知差异分析、利用驾驶模拟器对新手驾驶人进行干预训练(如危险感知训练)的效果评估等方面的研究。与国外研究相比,中国缺乏利用自然驾驶数据探究不同年龄阶段新手驾驶人真实状态下的驾驶习惯及行为特点,且有关新手驾驶人的管理措施(如惩罚/奖励反馈措施等)及效果评估研究相对欠缺。通过对新手驾驶人进行深入研究可为其驾驶学习、培训及管理提供科学指导。
(3) 群集3(绿色):分心驾驶风险及老年驾驶人驾驶表现分析
1)分心驾驶风险
分心通常可划分为视觉分心、听觉分心、操作分心及认知分心四类。分心驾驶主要由驾驶人使用手机、吃东西以及与乘客交谈等因素导致,通常会使驾驶人减少对道路环境的注意并降低其驾驶表现。目前国外对分心驾驶领域的研究主要集中在驾驶人驾驶时不同分心源(如手机、乘客、食物等)对驾驶行为及事故风险的影响、分心状态眼动模式、个人属性或人格特质与分心驾驶的关系、法规政策对驾驶人分心行为的影响等。探究分心驾驶常用驾驶模拟器试验采集数据,同时使用配合眼动仪可更加精准地分析驾驶人的注意力变化及分心驾驶行为。此外,通过自然驾驶数据探究分心驾驶也受到研究者的广泛关注。
图9 分心驾驶(图片来自网络)
中国研究者针对分心驾驶方面的研究相对较为丰富,涵盖上文所提到的4种不同分心类型对驾驶行为及风险感知的影响。但中国目前缺乏利用自然驾驶数据对驾驶人分心与驾驶行为、事故风险之间关系的探索,较少对分心驾驶的影响因素(如长时间连续驾驶)以及分心状态恢复等方面进行探究;此外,未来应考虑如何通过驾驶人行为、生理特征,利用手机等智能终端对分心行为数据进行采集,结合统计学或机器学习的方法对驾驶人分心状态进行识别与等级划分,为车载信息系统、预警系统以及人车共驾状态下驾驶人状态监控的设计提供参考。
2)老年驾驶人驾驶表现
世界范围内因人口老龄化加剧所带来老年驾驶人数量的增加,不仅会改变道路交通流特征,同时由于老年人的生理特征(如视觉、听觉、注意力、反应能力或认知等)随年龄有一定程度的下降,对其驾驶能力和安全提出了更具体的要求,因而老年驾驶人的驾驶安全性得到广泛关注。已有文献大多针对老年驾驶人与年轻驾驶人在驾驶行为、事故特征及严重度等方面的差异进行分析;此外,老年驾驶人危险驾驶行为(如分心驾驶、酒驾等)及其事故风险、身体健康与驾驶适宜性评估、驾驶行为自我调节等方面的研究成果较为丰富。
图10 老年驾驶人(图片来自网络)
中国有关老年驾驶人的研究包括风险感知能力、视觉特性、事故风险因素及与其他驾驶人群体驾驶行为差异性分析等,但针对老年驾驶人的心理特征、危险驾驶行为及驾驶培训等方面的研究较少。未来研究可考虑从老年驾驶人的心理状态、人格特质、生理特征、驾驶表现的变化等方面着手,通过了解不同年龄阶段老年驾驶人行为规律、安全意识及态度等,开展针对老年驾驶人的驾驶培训、教育及干预等研究,并提出有效对策来辅助老年驾驶人安全驾驶。
(4) 群集4(黄色):疲劳驾驶与职业驾驶人风险分析
1)疲劳驾驶
疲劳的发生与连续驾驶时间、工作环境、工作负荷、驾驶人缺乏休息以及嗜睡等方面相关,其使得驾驶人的驾驶表现、警觉性、风险感知能力等方面在疲劳状态下均不同程度地受到影响。有关疲劳的研究通常使用驾驶人主观疲劳/嗜睡等级汇报、生理特征(如脑电、心电等)、身体特征(如眼部、嘴部及头部运动特征等)以及车辆运行特征(如方向盘转角、车道偏移、车速等)对驾驶人疲劳行为等进行测量。由于侵入式测量方法存在对驾驶人正常驾驶行为产生干扰的问题,因而利用如驾驶行为、眼动特征等非侵入式测量的方式评估驾驶人疲劳越来越受到研究者的关注,同时结合人工智能的手段可有效提升疲劳识别精度。
图11 疲劳驾驶(图片来自网络)
国外有关疲劳驾驶的研究包括从导致疲劳的影响因素、疲劳驾驶表现及生理特征变化、疲劳的识别及预测、疲劳驾驶事故特征,以及疲劳驾驶的预防及干预措施等方面开展。中国在疲劳驾驶研究领域对上述研究主题均有涉及,但目前有关疲劳驾驶预防或干预措施的研究较少,且对自动驾驶条件下驾驶人疲劳变化情况及反应能力等方面研究较为缺乏。随着自动驾驶技术的发展,未来研究应同时考虑如何通过预测驾驶人疲劳程度来合理制定自动驾驶车辆接管方案,从而为驾驶人的出行安全提供合理、有效的保障。
2)职业驾驶人
有关职业驾驶人的研究集中在其生理、心理特征与事故风险、事故特征、个性态度、危险驾驶行为(如疲劳驾驶、分心驾驶、酒驾等)分析等方面。中国在职业驾驶人方面主要围绕人口学特征及心理特征与危险驾驶行为、事故风险之间的关系、驾驶适宜性评估以及职业健康等开展研究。
中国对辨识高风险职业驾驶人的相关研究较少,不同年龄、不同行业职业驾驶人的行为特征有待深入挖掘,且目前针对不同行业特点的职业驾驶人风险行为干预、教育及效果评估方面的研究较少。同济大学Wang等利用3种不同的行为安全(Behavior-based Safety,BBS)教育方法(教育频率、形式及内容各不相同),对上海市货运驾驶人进行教育并评估方法有效性,发现高频率、面对面讲解观看危险驾驶行为视频的教育方法效果最好。对职业驾驶人进行教育培训可有效减少风险驾驶行为的发生,但针对哪些行业开展何种形式和内容的教育,仍需要进一步探索和明确。
3 结语
驾驶风险研究领域的前沿热点研究包括“酒驾、药驾交通事故分析”、“年轻及新手驾驶人驾驶行为及心理分析”、“分心驾驶风险分析”、“老年驾驶人驾驶表现分析”、“职业驾驶人驾驶风险”及“疲劳驾驶风险分析”。针对上述前沿热点研究方向,对驾驶风险研究领域的重点驾驶人群和重点安全问题提出以下研究建议:
年轻驾驶人:针对数量庞大的年轻驾驶人群体,目前缺乏对其事故特征、危险驾驶行为(如酒驾、疲劳驾驶等)、心理特征及父母/朋辈影响等方面的深入分析。此外,现有对年轻驾驶人的事故风险量化方面的研究也较为缺乏。通过总结影响中国年轻驾驶人的事故风险因素,可为相应管理对策的制定提供参考。
老年驾驶人:中国作为全球老龄人口数量最多的国家,老年驾驶人数量也在逐年增加,老年人的驾驶需求不可忽视。已有研究表明,老年驾驶人的心理特征、生理特征对其驾驶行为及驾驶安全性具有显著影响,而采用哪些指标对老年人驾驶适宜性进行评估目前仍需明确。在老年驾驶人驾驶风险研究中,可结合老年驾驶人的驾驶表现、行为规律、生理特征等方面总结其驾驶特点,并据此开展老年驾驶人的驾驶培训、教育及干预等方面的研究,提升老年驾驶人驾驶安全性。
新手驾驶人:中国目前对新手驾驶人的监督及管理较为缺乏,国外如美国、加拿大、新西兰、澳大利亚等国通过驾驶证分级制度(Graduated Driver License,GDL)实现新手驾驶人管理。驾驶证分级制度包含全监督学习期、独立驾驶且有限制条件的中间期,以及驾驶完整许可期。该制度通过控制新手驾驶人的风险,使其在长时间、低风险的监督环境中驾驶来获得更多驾驶经验以达到提升新手驾驶人行驶安全的目的。新手驾驶人缺乏驾驶知识、经验及技能是造成交通事故的主要原因,如何借鉴国外经验来设计、制定并评估适用于中国新手驾驶人的教育及管理政策是当前和今后需要考虑的研究主题,如利用不同训练方法对新手驾驶人开展风险预期训练等,且不同年龄阶段新手驾驶人的驾驶行为习惯及特征也有待进一步挖掘。
职业驾驶人:众多文献探究了与职业驾驶人相关的交通事故或违法行为、工作环境以及疲劳驾驶等,职业驾驶人在工作中所面临的多重风险因素(如不规律的排班、长时间驾驶、饮食营养不良、工作压力等)不仅在其健康、生产力方面产生负面影响,同时也给驾驶人自身及道路交通安全带来严重威胁。现阶段中国对不同行业的职业驾驶人危险驾驶行为的干预方法、教育措施及效果评估方面的研究较少,结合车载设备或通过授课等方式对其行业特点进行有针对性的干预、教育将有助于提升职业驾驶人驾驶安全性。
酒驾、药驾:酒驾是造成交通事故的重点问题之一,未来可重点关注利用试验或自然驾驶数据来探究饮酒驾驶人的行为特征,量化其驾驶行为与事故风险之间的关系,并开展针对酒驾的监管、处罚政策力度对各类驾驶人的震慑效果评估。在药驾研究方面,可探究不同类型药物(包括毒品)使用对驾驶行为及驾驶风险的影响。由于目前中国尚未有明确针对药驾的法律法规,开展药驾相关研究将有助于推进中国相关法律法规的制定与完善。
分心驾驶:中国在分心驾驶研究领域的成果较为丰富,但目前缺乏利用多源数据对驾驶人的分心状态进行有效识别的方法研究,驾驶分心识别的实时性、鲁棒性和实用性也有待提升。随着汽车新技术的快速发展,车载设备与人的交互影响受到广泛关注。通过车载设备对驾驶人的分心状态进行识别并评估风险将有助于辅助驾驶人安全驾驶。此外,对自然驾驶数据进行充分挖掘,综合考虑车内、车外不同分心源所带来的驾驶风险,可为自动驾驶车辆的接管策略提供支持。
疲劳驾驶:疲劳驾驶是导致高速公路交通事故的主要原因之一,当前由疲劳导致的驾驶行为及生理特征变化受到广泛研究。中国对于疲劳驾驶的风险量化较为缺乏,而疲劳具有随时间累积的特征,选用何种指标来表征驾驶风险随时间的变化情况需要进一步明确。此外,考虑人车共驾时根据驾驶人疲劳状态制定合理、安全的车辆接管对策,或在自动驾驶车辆需进行人工接管时如何及时、有效地唤醒处于不同疲劳程度的驾驶人也是未来可以探究的方向。通过深入了解疲劳对驾驶人行为及事故风险的影响机理,有助于更好地针对不同驾驶人群体制定更有效的疲劳预防及管理对策。
当前驾驶风险领域研究主题随时间的变化如图12所示。分析可知,目前国际上有关驾驶风险研究的趋势已从前期关注的酒驾、药驾、青少年驾驶风险分析等方面向分心驾驶、手机使用、人因工程、自然驾驶研究等领域逐渐转移,并且在数据分析方法方面出现机器学习相关内容,如聚类分析等。在现有研究方法中,目前多数研究通过问卷调查、驾驶模拟器试验、实车试验等方法采集驾驶行为数据。自然驾驶研究作为一种反映驾驶人真实、自然状态下的行车数据的研究方法,可为驾驶风险研究领域提供丰富的数据支持。同时,将多种方法结合使用也将是未来驾驶风险研究的发展趋势,有助于深化对驾驶风险研究领域的理解。
图12 文献关键词共现随时间变化趋势
本文从人因角度出发,介绍了驾驶风险领域的研究成果,总结了国内外研究现状并指出中国在该领域研究中存在的不足。未来考虑结合其他因素(即车辆、道路及环境因素等)对驾驶风险进行更加系统的分析,扩大文献数据库的提取范围(如增加中文期刊、学位论文等文献源进行分析),补充检索词并改进数据的标准化及聚类算法,从而更科学、全面地了解驾驶风险领域的研究热点及发展趋势,为该领域的研究者提供更有价值的参考。
本文主要内容见《中国公路学报》2020年第6期“驾驶行为与驾驶风险国际研究进展”(点击下载浏览全文)。
引用格式:
张旭欣, 王雪松, 马勇, 马青变. 驾驶行为与驾驶风险国际研究进展[J]. 中国公路学报, 2020, 33(6): 1-17.