【随想录 - 二叉树】0404.左叶子之和

这篇博客介绍了如何通过递归解决力扣上的一个问题——计算二叉树中所有左叶子节点的值之和。文章详细阐述了递归的三个步骤,并解释了为何要先递归左子树以及终止条件为何不直接设置为左叶子节点。代码实现清晰,便于理解。
摘要由CSDN通过智能技术生成

力扣题目链接

整体思路:就是找到含有左叶子的父节点(注意,一个二叉树是不只有两个左叶子节点)

递归第一步:确定递归的参数和返回值
递归的参数就只有树节点,返回int类型的所有左叶子的数值

递归第二步:确定递归终止函数

如果当前节点是空节点,那么返回0;
如果当前节点的左子树跟右子树都为空的时候,返回0(没有左节点了);

if (root == NULL) return 0;
if (root->left == NULL && root->right== NULL) return 0;

递归第三步:明确单层循环的逻辑

当遇到有左叶子节点的时候,将值赋给leftValue中,在右子树中遇到含有的左节点赋值给rightValue,然后将leftValue跟rightValue的值相加返回。

int leftValue = sumOfLeftLeaves(root->left);    // 左

if (root->left && !root->left->left && !root->left->right) {
    leftValue = root->left->val;
}

int rightValue = sumOfLeftLeaves(root->right);  // 右

int sum = leftValue + rightValue;               // 中
return sum;

问题:为什么要先递归左节点后判断左叶子节点?
因为如果先判断左叶子节点后递归左节点的话,这样的话左叶子节点的值会被覆盖掉

问题:为什么终止条件不直接到左叶子节点,然后返回左叶子节点的值呢?
因为当你到左叶子节点的时候,你根本判断不了你就是左叶子节点。

最终代码:

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right== NULL) return 0;
        int leftValue = sumOfLeftLeaves(root->left);    // 左
        if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况
            leftValue = root->left->val;
        }
        int rightValue = sumOfLeftLeaves(root->right);  // 右
        int sum = leftValue + rightValue;               // 中
        return sum;
    }
};

参考自代码随想录:https://programmercarl.com/0404.左叶子之和.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值