中国城镇化时空分异及影响因素数据集(2010-2020)

基于《中国统计年鉴》、各省份统计年鉴及EPS全球统计数据库等相关统计数据,从人居生活、人文环境、人城关系等维度界定了城镇化内涵框架与指标体系,利用改进的熵值法计算综合评价指数,并运用泰尔指数、方差分解及地理探测器等方法,研发得到中国城镇化时空分异及影响因素数据集。该数据集内容包括2010-2020年间的以下数据:(1)中国城镇化演变趋势;(2)中国30个省区城镇化及分维度得分;(3)中国城镇化泰尔指数及分解;(4)中国城镇化区域差异的贡献率变化;(5)中国城镇化空间分异的直接作用力;(6)中国城镇化空间分异的间接作用力。该数据集存储为.xlsx格式,1个数据文件,数据量为28 KB。该数据集的分析研究成果拟发表在《地理学报》2023年78卷第4期。

作者:李汝资、黄晓玲、刘耀彬

机构:南昌大学中国中部经济社会发展研究中心

南昌大学经济管理学院

中国地质大学(武汉)经济管理学院

数据引用方式:

李汝资, 黄晓玲, 刘耀彬*. 中国城镇化时空分异及影响因素数据集(2010-2020)[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2023. https://doi.org/10.3974/geodb.2023.03.03.V1.

图片

原文链接:【数据分享】中国城镇化时空分异及影响因素数据集(2010-2020) 

  ★关 注【Ai科研学术社】公 众 号,获取海量教程和资源★
文章咨询看下方↓↓↓添加小编  

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体和语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值