2020地理设计组三等奖作品:基于新型冠状病毒肺炎(COVID-19)疫情数据的可变面元问题(MAUP)效应分析

该作品通过空间统计分析,探讨COVID-19疫情数据的区域化差异、尺度效应、粒度效应及分异效应,利用地理探测器、空间自相关和聚类分析等方法,揭示了疫情数据的不确定性和影响因素,为传染病预防提供参考。
摘要由CSDN通过智能技术生成

作品简介

1

设计思想

2019年底中国武汉爆发新型冠状病毒感染疫情,随之全国各省市均有病例被确诊,并逐渐扩散传播至全球,对中国乃至国际社会造成了巨大冲击。

MAUP为地理数据三大特征之一,指面状空间单元的大小和分区方法会对分析结果产生显著的影响。其主要包括尺度、粒度和分异效应。其中,尺度效应和粒度效应在《题西林壁》一诗中得到了很好的体现。“横看成林侧成峰,远近高低各不同”。不同视角、不同高度等看庐山,其不同,此为尺度效应;若考虑人眼分辨率固定不变,在大尺度下其地物分辨率较低,在小尺度下其地物分辨率较高,故而有“不识庐山真面目”,此为粒度效应。而在Gerrymandering(考虑通过重新划分选取从而干涉选举)的案例中,则很好的诠释了分异效应。生活中,存在尺度、粒度、分异效应的例子还有很多,那么,疫情数据存在分异效应吗?

该作品基于以上思考,从空间统计角度出发,聚焦MAUP问题的三个效应和区域化差异,基于2020.1.20-2020.4.26全国新型冠状病毒病例数据的相关统计指标为基础数据进行分析,探索并验证MAUP相关问题效应。

同时,将内容扩展至尺度-粒度-分异,进一步研究分异是否具有尺度效应和粒度效应,为疫情数据MAUP效应的研究进行更加深入的探讨,也为传染病的预防提供一定的参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YXGiser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值