目录
前言
#随着上一轮SPSS学习完成之后,本人又开始了新教材《交通安全分析》的学习
#有需要全套26版SPSS操作教程(数据分析)的宝子欢迎进我主页订阅哈(一杯奶茶钱,谢谢啦,物超所值),期待与宝子们共同进步吖~
#笔记整理过程不易,喜欢UP就点个免费的关注趴!
#本期内容接上一期34笔记
学习笔记整理
14车辆主动安全
- 美国CAMP项目中,R.Kiefer等利用实车实验数据建立了一项基于运动学理论的报警算法,该算法被业内公认为较成熟的报警算法。可以基于驾驶模拟仿真实验,在CAMP项目的基础上,补充高风险场景的制动阈值研究,以用于设计并改进不同风险等级下前向碰撞预警系统算法逻辑及报警方式。--Development and validation of functional definitions and evaluation procedures for for collision warning/avoidance system 1999[R],Forward collision warning requirements project:refining the CAMP crash alert timing approach by examining “last-second” braking and lane change maneuvers under various kinematic conditions 2003[R],《交通安全分析》P414
- 根据刹车反应测试,驾驶人在不同条件下的刹车反应时间通常取第85分位值或第95分位值,以满足大部分驾驶人都能达到所要求的反应时间。--《交通安全分析》P416
- 在进行前向碰撞预警研究中,预警模拟实验测试了两类典型的前向临撞工况:前车减速工况与前车低速行驶工况。这两类典型工况约占70%的前向碰撞场景。--Impact on car following behavior of a forward collision warning system with headway monitoring 2020[C],《交通安全分析》P417
- 通过车头时距及反应时间的对比分析来研究FCWS对跟车行为的影响。--Impact on car following behavior of a forward collision warning system with headway monitoring 2020[C],《交通安全分析》P419
- 为了分析FCWS的预警效果,需要确定驾驶人的反应时间。反应时间可以通过G.S.Gurusinghe提出的对比前车加速度(FV Acceleration)和相对速度(Relative Speed)的曲线图解法来确定。--Multiple car-following data with real-time kinematic global positioning system 2002[J],《交通安全分析》P419
- 疲劳驾驶研究主要采用驾驶模拟器实验、实车实验和自然驾驶测试等方式来采集驾驶人在疲劳状态下的驾驶行为、生理特征等指标,通过对驾驶人疲劳的检测及疲劳等级的判别,可为其提供实时、有效的预警措施,从而降低事故风险,提高道路安全性。--《交通安全分析》P420
- 疲劳驾驶检测方法主要包括主观测量法【是一种非侵入式测量法,通常基于驾驶人对自身疲劳水平的评价来判断疲劳状态,常用卡罗林斯卡嗜睡量表(Karolinska Sleepiness Scale,KSS)来评价,除此之外,还有斯坦福嗜睡量表(Stanford Sleepiness Scale,SSS)、视觉模拟评分法(Visual Analogue Scales,VAS),瑞典职业疲劳量表(Swedish Occupational Fatigue Inventory,SOFI)和Chalder疲劳量表等】、生理特征测量法【主要包括侵入式测量法和非侵入式测量法】和驾驶行为测量法【主要通过车辆运行特征(如车道偏移、车速变化、方向盘转角、方向盘握力等)来判断驾驶人是否疲劳】。--《交通安全分析》P421
- 使用主观评分的缺点在于自我汇报的形式会不断干扰驾驶人的警觉性,从而降低其真实的疲劳水平。此外,驾驶人可能会因社会称许性(即在自我评价时,评价者通常倾向于用一种比他们的“真实”答案更能被社会接受的方式来给出答案)的影响,导致所给出的疲劳等级出现偏差。为了检查驾驶人自我汇报疲劳水平的可靠性,通常采用观察者评估法,对驾驶人的疲劳水平进行客观评估,并对驾驶人的汇报结果进行校验。--Determinants of social desirability bias in sensitive surveys:a literature review 2011[J],Evaluation of driver drowsiness by trained raters 1994[J],《交通安全分析》P422
- 侵入式测量法常见包括脑电信号、心电信号、皮肤电信号和血液容积变化信号等。驾驶人在疲劳时,脑电信号中的波及波通常会显著变化,且驾驶人的心率会显著降低、皮电反应减小。且这些特征,在疲劳检测中均表现出较好的检测精度。--Detecting driver drowsiness based on sensors:a review 2012[J],《交通安全分析》P422
- 非侵入式测量法,经常使用视频或非接触式眼动仪采集生理特征。包括驾驶人头部姿态【头部垂直摆动及标准差等】、嘴部特征【打哈欠的频率、单位时间内嘴部张开时间比例等】、眼部特征【眨眼频率、眨眼持续时间、瞳孔直径、单位时间内眼睑闭合时间百分比(Percentage of Eyelid Closure,PERCLOS)】。研究表明,瞳孔直径及PERCLOS是与疲劳水平显著相关的眼动指标,且PERCLOS会随着驾驶人疲劳程度的增加而增加,瞳孔直径则会随着疲劳程度的增加而减小。--Driver drowsiness detection based on non-intrusive metrics considering individual specifics 2016[J],Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect 2020[J],《交通安全分析》P422
- 已有研究表明,疲劳时驾驶人方向盘修正次数较少,且随着疲劳程度增加,车道偏移标准差显著增大。--Detecting driver drowsiness based on sensors:a review 2012[J],Driver drowsiness detection based on non-intrusive metrics considering individual specifics 2016[J],《交通安全分析》P423
- 驾驶行为测量法的优势在于指标相对容易采集,但这些指标易被道路几何特征、交通环境及驾驶人状态(如认知负荷、视觉分心)等因素干扰。例如,方向盘握力与驾驶人的情绪波动和道路状况密切相关,驾驶人在空旷路段或繁忙路段、笔直路段或陡峭山路的方向盘握力具有显著差异。--A survey on state-of-the-art drowsiness detection techniques 2019[J],《交通安全分析》P423
结束语
#好啦~,以上就是我《交通安全分析》第三十五期学习笔记的学习情况啦~,希望能与大家交流学习经验,共同进步吖~
#也非常感谢大家对我的一路陪伴,宝子们的关注、支持和打赏就是up儿不断更新滴动力~
#有需要全套26版SPSS操作教程(数据分析)的宝子欢迎进我主页订阅哈(一杯奶茶钱,学费救急,万分感谢!望相助),期待与宝子们共同进步~