深入理解贝叶斯分类(根据气象预测出行)




以下通过案例(根据气象情况预测出行)帮助我们理解贝叶斯分类的原理过程

已知某人的出行和出行时的气象记录如下:

天气温度湿度刮风出行

由上述表格可知,数据的特征共有4个:天气、温度、湿度和刮风,类别共有2个:出行(是)、不出行(否)

下面我们来预测一下,在气象是雨、热、高、有的情况下,这个人是否会出行?

这是一个典型的分类问题。转化为数学问题就是:比较p(是|雨,热,高,有)p(否|雨,热,高,有)的概率,通过判断两个概率大小得出是否出行

根据朴素贝叶斯公式,可得
p ( 是 ∣ 雨 , 热 , 高 , 有 ) = p ( 雨 , 热 , 高 , 有 ∣ 是 ) ∗ p ( 是 ) p ( 雨 , 热 , 高 , 有 ) p(是|雨,热,高,有)=\frac{p(雨,热,高,有|是)*p(是)}{p(雨,热,高,有)} p(,,,)=p(,,,)p(,,,)p()

其中,p(雨,热,高,有|是)表示已知出行发生的条件下气象为雨,热,高,有的条件概率,p(是)表示出行的先验概率,p(雨,热,高,有)表示气象为雨,热,高,有的先验概率

通过朴素贝叶斯公式,我们可以将无法直接求解的因转换为求解已知的三个量的果,将待求的量转化为其它可求的量,这就是贝叶斯公式所做的事情

由于朴素贝叶斯假设各个特征之间相互独立,因此有
p ( 雨 , 热 , 高 , 有 ∣ 是 ) = p ( 雨 ∣ 是 ) ∗ p ( 热 ∣ 是 ) ∗ p ( 高 ∣ 是 ) ∗ p ( 有 ∣ 是 ) p ( 雨 , 热 , 高 , 有 ) = p ( 雨 ) ∗ p ( 热 ) ∗ p ( 高 ) ∗ p ( 有 ) p(雨,热,高,有|是)=p(雨|是)*p(热|是)*p(高|是)*p(有|是) \\[3ex] p(雨,热,高,有)=p(雨)*p(热)*p(高)*p(有) p(,,,)=p()p()p()p()p(,,,)=p()p()p()p()

根据上式,我们只需要分别计算出等式右边的概率,也就得到了左边的概率

当样本量很大时,根据中心极限定理,样本的抽样分布服从正态分布,频率近似于概率,所以,这里我们直接进行统计即可

下面我们按照分子、分母分别求解概率p(是|雨,热,高,有)p(否|雨,热,高,有),通过比较两者大小得出这个人是否会出行的结论

1、p(是 | 雨, 热, 高, 有)

1)分子
p ( 是 ) = 3 / 6 p ( 雨 ∣ 是 ) = 1 / 3 p ( 热 ∣ 是 ) = 2 / 3 p ( 高 ∣ 是 ) = 1 / 3 p ( 有 ∣ 是 ) = 2 / 3 \begin{align} & p(是)=3/6 \notag \\ & p(雨|是)=1/3 \notag \\ & p(热|是)=2/3 \notag \\ & p(高|是)=1/3 \notag \\ & p(有|是)=2/3 \notag \end{align} p()=3/6p()=1/3p()=2/3p()=1/3p()=2/3

计算分子:p(雨,热,高,有|是)*p(是)=2/81

2)分母
p ( 雨 ) = 3 / 6 p ( 热 ) = 3 / 6 p ( 高 ) = 3 / 6 p ( 有 ) = 4 / 6 \begin{align} & p(雨)=3/6 \notag \\ & p(热)=3/6 \notag \\ & p(高)=3/6 \notag \\ & p(有)=4/6 \notag \end{align} p()=3/6p()=3/6p()=3/6p()=4/6

计算分母:p(雨,热,高,有)=1/12

p(是|雨,热,高,有)=24/81=8/27

2、p(否 | 雨, 热, 高, 有)

1)分子
p ( 否 ) = 3 / 6 p ( 雨 ∣ 否 ) = 2 / 3 p ( 热 ∣ 否 ) = 1 / 3 p ( 高 ∣ 否 ) = 2 / 3 p ( 有 ∣ 否 ) = 2 / 3 \begin{align} & p(否)=3/6 \notag \\ & p(雨|否)=2/3 \notag \\ & p(热|否)=1/3 \notag \\ & p(高|否)=2/3 \notag \\ & p(有|否)=2/3 \notag \end{align} p()=3/6p()=2/3p()=1/3p()=2/3p()=2/3

计算分子:p(雨,热,高,有|是)*p(是)=4/81

2)分母
p ( 雨 ) = 3 / 6 p ( 热 ) = 3 / 6 p ( 高 ) = 3 / 6 p ( 有 ) = 4 / 6 \begin{align} & p(雨)=3/6 \notag \\ & p(热)=3/6 \notag \\ & p(高)=3/6 \notag \\ & p(有)=4/6 \notag \end{align} p()=3/6p()=3/6p()=3/6p()=4/6

计算分母:p(雨,热,高,有)=1/12

p(否|雨,热,高,有)=48/81=16/27

3、结论

综上所述,8/27<16/27,即p(是|雨,热,高,有)<p(否|雨,热,高,有)

最大后验概率为p(否|雨,热,高,有),因此,这个人在气象是雨、热、高、有的情况下不会出行


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值