023、经典神经网络-2

之——AlwxNet

目录

之——AlwxNet

杂谈

正文

1.大数据的出现

2.更深更大的LeNet

3.其他改进

4.实现

 小结


杂谈

        2000年初期时候,流行核方法,SVM,核心是特征提取,然后选择核函数计算相关性,变成凸优化问题,是一个在数学上有完整数学定义的漂亮定理。

        2000年初计算机视觉最开始是从几何学发展来,将计算机视觉问题描述为几何模型,从而建立凸优化的目标函数,这个领域需要我们先根据先验知识假设拟合几何模型来描述图像,假设如果成立则效果特别好。 

        大概在2010年左右,学界聚焦于特征工程,也就是图像原始特征的抽取,诞生了特征描述子SIFT、SURF、视觉词袋bagging。

        但随着硬件发展,我们的计算机算力越来越强:

        2012年,引发深度学习热潮的第一个网络,从那时候至今,深度学习爆红不衰。

        AlexNet是一个深度卷积神经网络,在2012年ImageNet图像分类赛(ILSVRC)中取得了重大突破,标志着深度学习在计算机视觉领域的崭露头角。以下是AlexNet的概要:

1. 架构: AlexNet由深度卷积神经网络组成,共有8个可训练的层,包括5个卷积层和3个全连接层。

2. 激活函数: AlexNet主要使用修正线性单元(ReLU)作为激活函数,这有助于加速模型的训练。

3. 层间连接: AlexNet采用了一种特殊的连接方式,即跨层连接。在第五层卷积层后面紧跟着全连接层,这种深度结构有助于学习更复杂的特征。

4. 局部响应归一化: 在卷积层之后,AlexNet引入了局部响应归一化层,这有助于模型泛化和对抗过拟合。

5. 池化层: AlexNet使用了最大池化层,以降低特征图的空间分辨率,减少参数数量,并增强平移不变性。

6. 数据增强: 为了扩大训练数据集,AlexNet采用了数据增强技术,如随机裁剪、水平翻转和调整亮度对比度等。

7. Dropout: 在全连接层中,AlexNet使用了Dropout技术,随机地将一些神经元输出置零,以减少过拟合。

8. 大规模训练: AlexNet是在大规模GPU集群上进行训练的,这是当时的一项重要创新,有助于加速深度神经网络的训练。

9. ImageNet竞赛: 在2012年的ImageNet竞赛中,AlexNet在图像分类任务上获得了显著的准确度提升,取得了当时领先的结果,将深度学习引入了计算机视觉的主流。

        

        AlexNet的成功激发了对深度学习的广泛研究兴趣,并启发了更深、更复杂的卷积神经网络架构的发展。这一突破性的网络奠定了深度学习在图像处理和计算机视觉中的地位,成为了后续深度学习研究和应用的基础


正文

1.大数据的出现

        相比于手写数字,彩色大图像的出现使得我们需要更优化的网络来进行分类处理: 


2.更深更大的LeNet

        AlexNet本质上就是一个更大更深的网络,相比于LeNet这样的系小框架,AlexNet颠覆了神经网络的认知,定义了深度的意义和作用。

       从LeNet到AlexNet:

        应对更大的图像,进行了进一步的改进: 

         更深更大的数据通道:

  • Alex是更大更深的Le,10x参数,260x计算复杂度。 

3.其他改进

                Relu的引进、dropout的引进,数据增强的引进都使得AlexNet拥有更好的的性能:

        局部的、亮度的、颜色的数据增强使得模型泛化能力得到进一步提高:


4.实现

        还是使用sequntial,相当利索,训练函数之前也写好了直接调用,一步步推了输入输出,发现可以用遍历层来推:

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    # 这里使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    #224in,1padding → 226 for 11 kernel 4stride → (226-11+1)/4=54out
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    #54in → 54 for 3 kernel 2stride → (54-3+1)/2=26out
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    #26in,2padding → 30 for 5 kernel → 26out
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    #26in → 26 for 3 kernel 2stride → (26-3+1)/2=12out
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    #12in,1padding → 14 for 3 kernel 1stride → 12out
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    #12in → 12 for 3 kernel 1stride → 12out
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    #12in → 12 for 3 kernel 1stride → 12out
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    #12in → 12 for 3 kernel 2stride → 5out
    nn.MaxPool2d(kernel_size=3, stride=2),
    #flatten ,so its 256*5*5 6400
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

X = torch.randn(1, 1, 224, 224)
for layer in net:
    X=layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)

#%%

#ImageNet 跑不了一点,还是用mnist
batch_size = 128
#resize到224
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.001, 5
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

        可见仅仅5轮就有不错的效果,dropout的引入几乎消除了过拟合,不过也大有可能是轮数太少了欠拟合,gpu太拉了等我搞到卡了再来搞: 


 小结

        最开始是从类脑科学开始模拟神经元构造神经网络,但到了深度学习自动学习参数时候,发现实际的特征学习 很多是人无法理解的抽象特征。

        本次实验没有用到局部归一化,因为在后来实验发现并不是刚需。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Here-We-Are

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值