基于深度学习机器学习的中文期刊分类

该博客探讨了基于深度学习的中文期刊分类项目,包括选用CNKI数据集,利用词向量和SVM等分类器进行文本分类。文章讨论了数据清洗、词向量训练以及模型构建过程中的挑战和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据文件下载好放入 2_word2vec 中 模型文件下载好放入 2_word2vec 中
1_dataclean 为数据预处理(由于数据文件本文已处理,勿运行)
2_word2vec 为词嵌入模型
3_sklearn 为项目的 baseline,特征工程 + 朴素贝叶斯
4_cnn 为卷积神经网络的文本分类(调参很久,未得到好结果)
5_rnn 为卷积神经网络的文本分类(结果优于 baseline)

选题意义

  • 期刊论文本数量增长迅速,人工分类耗费精力

  • 某个实验表明,相同的人在不同时间段对同一批文献分类;不同的人对同一批文献分类,得到的结果发现相差较大,是因为人的主观性和知识结构的变迁会影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕设论文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值