基于GMM与MFCC特征进行数字0-9的语音识别,GMM,MFCC,语音识别,中文数据,sklearn,Digital Voice Recognition。

基于数字语音数据集,编写代码,使用 GMM 算法完成语音识别,对输入的一段音频进行分类,输出语音中的数字,如“2”、“10”。

二、实验环境

操作系统使用 MacOS,Python=3.6,python-speech-features=0.6,pyaudio, scikit-learn=0.18.1。

MFCC 特征提取

我们使用课程提供的英文数据集,包括数字 0-9 共 150 个 wav 格式的音频文件。我们使用 Python 的 wav 包读取 wav 文件,使用 python-speech-features 获得每条音频数据的 13 维 MFCC 特征。我们在本实验中对加入一阶导与二阶导的 39 维特征同样进行了实验,但识别结果不如 13 维 MFCC 特征。我们分析原因很可能为训练数据过少导致数据的过拟合。具体来说,MFCC 特征提取算法首先进行预加重,然后对语音文件进行分帧,加窗,然后进行快速傅里叶变换,将它转换为频域上的能量分布来观察;将能量谱通过一组 Mel 尺度的三角形滤波器组,对频谱进行平滑化,并消除谐波的作用,突显原先语音的共振峰;计算每个

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕设论文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值