【正点原子K210连载】第四十四章 人脸68关键点检测实验 摘自【正点原子】DNK210使用指南-CanMV版指南

第四十四章 人脸68关键点检测实验

在上一章节中,介绍了利用maix.KPU模块实现了人脸属性分析,本章将继续介绍利用maix.KPU模块实现的人脸68关键点检测。通过本章的学习,读者将学习到人脸68关键点检测应用在CanMV上的实现。
本章分为如下几个小节:
44.1 maix.KPU模块介绍
44.2 硬件设计
44.3 程序设计
44.4 运行验证

44.1 maix.KPU模块介绍
有关maix.KPU模块的介绍,请见第39.1小节《maix.KPU模块介绍》。
44.2 硬件设计
44.2.1 例程功能

  1. 获取摄像头输出的图像,并送入KPU进行人脸检测,接着对检测到的人脸分别进行人脸68关键点检测,最后将所有的检测结果和原始图像一同在LCD上进行显示。
    44.2.2 硬件资源
    本章实验内容,主要讲解maix.KPU模块的使用,无需关注硬件资源。
    44.2.3 原理图
    本章实验内容,主要讲解maix.KPU模块的使用,无需关注原理图。
    44.3 程序设计
    44.3.1 maix.KPU模块介绍
    有关maix.KPU模块的介绍,请见第44.1小节《maix.KPU模块介绍》。
    44.3.2 程序流程图
    在这里插入图片描述

图44.3.2.1 人脸68关键点检测实验流程图
44.3.3 main.py代码
main.py中的脚本代码如下所示:

import lcd
import sensor
import gc
from maix import KPU

lcd.init()
sensor.reset()
sensor.set_framesize(sensor.QVGA)
sensor.set_pixformat(sensor.RGB565)
sensor.set_hmirror(False)

anchor = (0.1075, 0.126875, 0.126875, 0.175, 0.1465625, 0.2246875, 0.1953125, 0.25375, 0.2440625, 0.351875, 0.341875, 0.4721875, 0.5078125, 0.6696875, 0.8984375, 1.099687, 2.129062, 2.425937)
names = ['face']

# 构造并初始化人脸检测KPU对象
face_detecter = KPU()
face_detecter.load_kmodel("/sd/KPU/face_detect_320x240.kmodel")
face_detecter.init_yolo2(anchor, anchor_num=len(anchor) // 2, img_w=320, img_h=240, net_w=320, net_h=240, layer_w=10, layer_h=8, threshold=0.5, nms_value=0.2, classes=len(names))

# 构造并初始化人脸68关键点检测KPU对象
lm68_kpu = KPU()
lm68_kpu.load_kmodel("/sd/KPU/landmark68.kmodel")

# 按指定比例扩展矩形框
def extend_box(x, y, w, h, scale):
    x1 = int(x - scale * w)
    x2 = int(x + w - 1 + scale * w)
    y1 = int(y - scale * h)
    y2 = int(y + h - 1 + scale * h)
    x1 = x1 if x1 > 0 else 0
    x2 = x2 if x2 < (320 - 1) else (320 - 1)
    y1 = y1 if y1 > 0 else 0
    y2 = y2 if y2 < (240 - 1) else (240 - 1)
    return x1, y1, x2 - x1 + 1, y2 - y1 + 1

while True:
    img = sensor.snapshot()
    face_detecter.run_with_output(img)
    faces = face_detecter.regionlayer_yolo2()
    for face in faces:
        # 框出人脸位置
        x, y, w, h = extend_box(face[0], face[1], face[2], face[3], 0.08)
        img.draw_rectangle(x, y, w, h, color=(0, 255, 0))
        # 计算人脸68关键点
        face_img = img.cut(x, y, w, h)
        resize_img = face_img.resize(128, 128)
        resize_img.pix_to_ai()
        output = lm68_kpu.run_with_output(resize_img, getlist=True)
        for i in range(len(output) // 2):
            point_x = int(KPU.sigmoid(output[2 * i]) * w + x)
            point_y = int(KPU.sigmoid(output[2 * i + 1]) * h + y)
            img.draw_cross(point_x, point_y, size=5, color=(0, 0, 255))
        del face_img
        del resize_img
    lcd.display(img)
    gc.collect()

可以看到一开始是先初始化了LCD和摄像头,并分别构造并初始化了用于人脸检测和人脸68关键点检测的KPU对象。
然后便是在一个循环中不断地获取摄像头输出的图像,首先将图像进行人脸检测,检测图像中存在的人脸,接着对人脸图像进行68关键点检测,分析出人脸68关键点的位置,最后将以上所有的分析检测结果在图像上进行绘制,然后在LCD上显示图像。
44.4 运行验证
将DNK210开发板连接CanMV IDE,点击CanMV IDE上的“开始(运行脚本)”按钮后,将摄像头对准人脸,让其采集到人脸图像,随后便能在LCD上看到摄像头输出的图像,同时能看到图像上标注了人脸位置和人脸68关键点位置等信息,如下图所示:
在这里插入图片描述

图44.4.1 LCD显示人脸68关键点检测实验结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值