深度可分离卷积实战(1)原理讲解

本文基于10-monkeys数据集进行分类实战

继续说深度可分离卷积原理:

一、过程

深度可分离卷积主要分为两个部分,第一个部分就是加入图片是3通道,把它depthwise,以前的卷积操作比如是一个立方体假如卷积核是5*5*3,图片是32*32*3,那么一次之后就变成1*1*1一个点,对于深度可分离卷积,为了降低参数量,第一步将卷积核看成1层的,每个通道分别去算,通道数有几个卷积核就有几个,不会把上面3*3*3个点一起来算,就是用每9个点用一个卷积核,只有二维的,这就和之前的卷积不一样。第一次depthwise是不会改变通道数的。

下一步就是pointwise,这个时候用的是1*1的卷积核,这个时候就是用立方体了,经过这一次计算,图像尺寸不会改变因为是1*1卷积核,但是输出的通道数,设置几个通道数,输出就是几个通道数,比如上图设置两个通道数,那么就输出两个通道数。

二、参数量

推荐博文:『高性能模型』深度可分离卷积和MobileNet_v1 - 叠加态的猫 - 博客园

那么对比原先的卷积,深度可分离卷积的参数量减少了多少呢?

假设卷积核的参数是Dk*Dk,输入的通道数是M,输出的通道数是N,那么参数量就是Dk*Dk*M*N,也就是某一层的参数量,对于计算量来说,还要乘以Df*Df,也就是输出尺寸,滑动次数。那么对于depthwise来说,输出通道数相当于1,所以参数量为普通CNN的N分之一。

对于pointwise来说,卷积核是1*1的,所以就没有Dk,前面变成1,那么参数量就是M*N,那么再乘以一个输入图像尺寸就是计算量。

注:卷积计算量多于参数量,因为要滑动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何仙鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值