Hugging Face 刚刚推出了 MCP 课程,其中包含需要了解的关于模型上下文协议及其使用方法的一切!
完全免费且开源的课程!从理解 MCP 是什么到连接 LLM,再到部署自己的 MCP 服务器!
该课程由以下部分组成:
- 基础单元:从理论上学习 MCP概念。
- 实践:将学习如何使用成熟的 MCP SDK构建应用程序。这些实践部分将提供预先配置的环境。
- 用例分配:将在其中应用所学的概念来解决您选择的实际问题。
- 合作:正在与 Hugging Face 的合作伙伴合作,提供最新的 MCP 实施和工具。
无 MCP(M×N 问题)
如果没有像 MCP 这样的协议,开发人员将需要创建 M×N 个自定义集成——每个集成对应一个 AI 应用程序和外部功能的可能配对。
每个 AI 应用程序都需要单独与各个工具/数据源集成。这是一个非常复杂且昂贵的过程,会给开发人员带来诸多不便,维护成本也很高。
使用 MCP(M+N )
MCP 通过提供标准接口将其转化为 M+N 问题:每个 AI 应用只需实现一次 MCP 客户端,每个工具/数据源只需实现一次服务端。这大大降低了集成复杂性和维护负担。
每个AI应用实现一次MCP的客户端,每个工具/数据源实现一次服务器端。
主机、客户端和服务器
模型上下文协议 (MCP) 建立在客户端-服务器架构上,可实现 AI 模型与外部系统之间的结构化通信。
MCP 架构由三个主要组件组成,每个组件都有明确的角色和职责:主机、客户端和服务器。
这些功能如何协同工作以实现复杂的交互。下表概述了这些功能、控制者、控制方向以及其他一些细节。
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!
你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!