Spark SQL分组排行榜

一、提出任务

  • 分组求TopN是大数据领域常见的需求,主要是根据数据的某一列进行分组,然后将分组后的每一组数据按照指定的列进行排序,最后取每一组的前N行数据。                                             有一组学生成绩数
  1. 张三丰 90
  2. 李孟达 85
  3. 张三丰 87
  4. 王晓云 93
  5. 李孟达 65
  6. 张三丰 76
  7. 王晓云 78
  8. 李孟达 60
  9. 张三丰 94
  10. 王晓云 97
  11. 李孟达 88
  12. 张三丰 80
  13. 王晓云 88
  14. 李孟达 82
  15. 王晓云 98
     

  • 同一个学生有多门成绩,现需要计算每个学生分数最高的前3个成绩,期望输出结果如下所示:
  1. 张三丰:94 90 87
  2. 李孟达:88 85 82
  3. 王晓云:98 97 93

 预备工作:启动集群的HDFS与Spark

将成绩文件 - grades.txt上传到HDFS上/input目录

二、完成任务

(一)新建Maven项目

  • 设置项目信息(项目名、保存位置、组编号、项目编号)

 

 单击【Finish】按钮

 将java目录改成scala目录

(二)添加相关依赖和构建插件

  • pom.xml文件里添加依赖与Maven构建插件

 

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.huawei.rdd</groupId>
    <artifactId>GradeTopN</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

(三)创建日志属性文件

  • 在资源文件夹里创建日志属性文件 - log4j.properties
  • log4j.rootLogger=ERROR, stdout, logfile
    log4j.appender.stdout=org.apache.log4j.ConsoleAppender
    log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
    log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
    log4j.appender.logfile=org.apache.log4j.FileAppender
    log4j.appender.logfile.File=target/spark.log
    log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
    log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
    

    (四)创建分组排行榜单例对象

  • net.huawei.rdd包里创建GradeTopN单例对象
package net.huawei.rdd

import org.apache.spark.{SparkConf, SparkContext}


object GradeTopN {
  def main(args: Array[String]): Unit = {
    // 创建Spark配置对象
    val conf = new SparkConf()
      .setAppName("GradeTopN") // 设置应用名称
      .setMaster("local[*]") // 设置主节点位置(目前本地调试)
    // 基于Spark配置对象创建Spark容器
    val sc = new SparkContext(conf);
    // 实现分组排行榜
    val top3 = sc.textFile("hdfs://master:9000/input/grades.txt")
      .map(line => {
          val fields = line.split(" ")
          (fields(0), fields(1))
        }) // 将每行成绩映射成二元组(name, grade)
      .groupByKey() // 按键分组
        .map(item => {
          val name = item._1
          val top3 = item._2.toList.sortWith(_ > _).take(3)
          (name, top3)
        }) // 值排序,取前三

    // 输出分组排行榜结果    
    top3.collect.foreach(line => {
      val name = line._1
      var scores = ""
      for (score <- line._2)
        scores = scores + " " + score
      println(name + ":" + scores)
    })

    // 停止Spark容器,结束任务
    sc.stop()
  }
}

(五)本地运行程序,查看结果

  • 在控制台查看输出结果

(六)交互式操作查看中间结果

1、读取成绩文件得到RDD

  • 执行命令:val lines = sc.textFile("hdfs://master:9000/input/grades.txt")

 

 2、利用映射算子生成二元组构成的RDD

val grades = lines.map(line => {
          val fields = line.split(" ")
          (fields(0), fields(1))
        })

3、按键分组得到新的二元组构成的RDD

  • 执行命令:val groupGrades = grades.groupByKey()

 4、按值排序,取前三

  1. val top3 = groupGrades.map(item => {
  2.           val name = item._1
  3.           val top3 = item._2.toList.sortWith(_ > _).take(3)
  4.           (name, top3)
  5.         })
     

 执行上述代码

 5、按指定格式输出结果

  1. top3.collect.foreach(line => {
  2.       val name = line._1
  3.       var scores = ""
  4.       for (score <- line._2)
  5.         scores = scores + " " + score
  6.       println(name + ":" + scores)
  7.     })
     

 执行上述代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值