应用一(进行系统分析):分析产业对GDP的影响程度
基本思想是:根据序列几何形状的相似程度来判断其联系是否紧密
1.1 画统计图(用excel)
画图 后得配上简单的分析:
① 四个变量均呈上升的趋势
② 第⼆产业的增幅较为明显
③ 第⼆产业和第三产业的差距在后三年相差更⼤1.2 确认分析序列
1.3 对变量进行预处理
1.4 计算子序列中各个指标与母指标的关联系数
1.5计算出灰色关联度
代码
%% 灰色关联分析用于系统分析例题的讲解 clear;clc load gdp.mat % 导入数据 一个6*4的矩阵 % 不会导入数据的同学可以看看第二讲topsis模型,我们也可以自己在工作区新建变量,并把Excel的数据粘贴过来 % 注意Matlab的当前文件夹一定要切换到有数据文件的这个文件夹内 Mean = mean(gdp); % 求出每一列的均值以供后续的数据预处理 gdp = gdp ./ repmat(Mean,size(gdp,1),1); %size(gdp,1)=6, repmat(Mean,6,1)可以将矩阵进行复制,复制为和gdp同等大小,然后使用点除(对应元素相除),这些在第一讲层次分析法都讲过 disp('预处理后的矩阵为:'); disp(gdp) Y = gdp(:,1); % 母序列 X = gdp(:,2:end); % 子序列 absX0_Xi = abs(X - repmat(Y,1,size(X,2))) % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y) a = min(min(absX0_Xi)) % 计算两级最小差a b = max(max(absX0_Xi)) % 计算两级最大差b rho = 0.5; % 分辨系数取0.5 gamma = (a+rho*b) ./ (absX0_Xi + rho*b) % 计算子序列中各个指标与母序列的关联系数 disp('子序列中各个指标的灰色关联度分别为:') disp(mean(gamma))
应用二(进行综合评价):灰色关联分析评价河流情况
代码
%% 灰色关联分析用于综合评价模型例题的讲解 clear;clc load data_water_quality.mat % 不会导入数据的同学可以看看第二讲topsis模型,我们也可以自己在工作区新建变量,并把Excel的数据粘贴过来 % 注意Matlab的当前文件夹一定要切换到有数据文件的这个文件夹内 %% 判断是否需要正向化 [n,m] = size(X); disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']); %1 if Judge == 1 Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4] disp('请输入需要处理的这些列的指 标类型(1:极小型, 2:中间型, 3:区间型) ') Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3] % 注意,Position和Type是两个同维度的行向量 for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数 X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i)); % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数 % 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素 % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型) % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列 % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量 end disp('正向化后的矩阵 X = ') disp(X) end %% 对正向化后的矩阵进行预处理 Mean = mean(X); % 求出每一列的均值以供后续的数据预处理 Z = X ./ repmat(Mean,size(X,1),1); disp('预处理后的矩阵为:'); disp(Z) %% 构造母序列和子序列 Y = max(Z,[],2); % max的第二个参数为空矩阵,函数说明如下.母序列为虚拟的,用每一行的最大值构成的列向量表示母序列 X = Z; % 子序列就是预处理后的数据矩阵 %% max函数的第二种用法,选出矩阵对应位置的最大元素 % A = [1 2;5 9] % B = [2,3;6 8] % max(A,B) %% % A = [1 2;5 9] % B = [] % max(A,B,1) 表示比较AB两矩阵列方向上的最大值 % max(A,B,2) 表示比较AB两矩阵行方向上的最大值 %% 计算得分 absX0_Xi = abs(X - repmat(Y,1,size(X,2))) % 计算|X0-Xi|矩阵 a = min(min(absX0_Xi)) % 计算两级最小差a b = max(max(absX0_Xi)) % 计算两级最大差b rho = 0.5; % 分辨系数取0.5 gamma = (a+rho*b) ./ (absX0_Xi + rho*b) % 计算子序列中各个指标与母序列的关联系数 weight = mean(gamma) / sum(mean(gamma)); % 利用子序列中各个指标的灰色关联度计算权重 score = sum(X .* repmat(weight,size(X,1),1),2); % 未归一化的得分 stand_S = score / sum(score); % 归一化后的得分 [sorted_S,index] = sort(stand_S ,'descend') % 进行排序