评价类算法--灰色关联分析

应用一(进行系统分析):分析产业对GDP的影响程度

基本思想是:根据序列几何形状的相似程度来判断其联系是否紧密

1.1 画统计图(用excel)

画图 后得配上简单的分析:
① 四个变量均呈上升的趋势
② 第⼆产业的增幅较为明显
③ 第⼆产业和第三产业的差距在后三年相差更⼤

1.2 确认分析序列

1.3 对变量进行预处理

1.4 计算子序列中各个指标与母指标的关联系数

1.5计算出灰色关联度

代码

%% 灰色关联分析用于系统分析例题的讲解
clear;clc
load gdp.mat  % 导入数据 一个6*4的矩阵
% 不会导入数据的同学可以看看第二讲topsis模型,我们也可以自己在工作区新建变量,并把Excel的数据粘贴过来
% 注意Matlab的当前文件夹一定要切换到有数据文件的这个文件夹内
Mean = mean(gdp);  % 求出每一列的均值以供后续的数据预处理
gdp = gdp ./ repmat(Mean,size(gdp,1),1);  %size(gdp,1)=6, repmat(Mean,6,1)可以将矩阵进行复制,复制为和gdp同等大小,然后使用点除(对应元素相除),这些在第一讲层次分析法都讲过
disp('预处理后的矩阵为:'); disp(gdp)
Y = gdp(:,1);  % 母序列
X = gdp(:,2:end); % 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y)
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))

应用二(进行综合评价):灰色关联分析评价河流情况

代码

%% 灰色关联分析用于综合评价模型例题的讲解
clear;clc
load data_water_quality.mat
% 不会导入数据的同学可以看看第二讲topsis模型,我们也可以自己在工作区新建变量,并把Excel的数据粘贴过来
% 注意Matlab的当前文件夹一定要切换到有数据文件的这个文件夹内

%%  判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);   %1

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指  标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end

%% 对正向化后的矩阵进行预处理
Mean = mean(X);  % 求出每一列的均值以供后续的数据预处理
Z = X ./ repmat(Mean,size(X,1),1);  
disp('预处理后的矩阵为:'); disp(Z)

%% 构造母序列和子序列
Y = max(Z,[],2);  % max的第二个参数为空矩阵,函数说明如下.母序列为虚拟的,用每一行的最大值构成的列向量表示母序列
X = Z; % 子序列就是预处理后的数据矩阵

%% max函数的第二种用法,选出矩阵对应位置的最大元素
% A = [1 2;5 9]
% B = [2,3;6 8]
% max(A,B)
%%
% A = [1 2;5 9]
% B = []
% max(A,B,1) 表示比较AB两矩阵列方向上的最大值
% max(A,B,2) 表示比较AB两矩阵行方向上的最大值

%% 计算得分
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
weight = mean(gamma) / sum(mean(gamma));  % 利用子序列中各个指标的灰色关联度计算权重
score = sum(X .* repmat(weight,size(X,1),1),2);   % 未归一化的得分
stand_S = score / sum(score);   % 归一化后的得分
[sorted_S,index] = sort(stand_S ,'descend') % 进行排序

熵权法-TOPSIS-灰色关联度综合算法是一种多目标优化的数学方法,用于评价方案的优劣程度。这个方法结合了熵权法、TOPSIS法和灰色关联度分析法的特点。 熵权法是一种确定权重的方法,它通过计算每个因素的熵值来确定其重要性。熵值越大,表示该因素对决策结果的影响越大。 TOPSIS法是一种评价方案优劣的方法,它通过计算每个方案与最优方案和最劣方案之间的距离,来确定方案的优劣程度。距离越小,表示方案越接近最优解。 灰色关联度分析法是一种用于评价方案的相似度的方法,它通过计算每个方案与其他方案之间的关联度,来确定方案的相似程度。关联度越大,表示方案越相似。 综合使用这三种方法,可以得到一个综合评价结果,用于评价方案的优劣程度。 具体步骤如下: 1. 确定评价因素和权重:使用熵权法确定每个评价因素的权重。 2. 构建决策矩阵:将每个方案的评价因素值组成一个决策矩阵。 3. 归一化决策矩阵:对决策矩阵进行归一化处理,将所有因素的值映射到0-1之间。 4. 计算正理想解和负理想解:根据归一化后的决策矩阵,计算正理想解和负理想解。 5. 计算方案与正理想解和负理想解的距离:根据归一化后的决策矩阵,计算每个方案与正理想解和负理想解的距离。 6. 计算方案的相似度:根据灰色关联度分析法,计算每个方案与其他方案的关联度。 7. 综合评价:根据TOPSIS法,综合考虑方案与正理想解和负理想解的距离以及方案的相似度,得到最终的评价结果。 这种方法可以应用于各种决策问题,例如项目选择、供应商评价等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~|Bernard|

你的鼓励是我写下去最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值