同余_费马小定理_逆元

以下内容均在自然数范围讨论

1. 同余

1.1. 由定义得

( 1 ) k p + r ≡ r ( m o d p ) ( 2 ) 若 a ≡ b ( m o d p ) 且 a ≤ b ,则 p ∣ ( b − a ) (1)kp+r \equiv r \pmod p \\ (2)若a\equiv b \pmod p且a \le b,则p|(b-a) (1)kp+rr(modp)(2)ab(modp)ab,则p(ba)

1.2. 加法和减法

a ± b ≡ a   m o d   p ± b   m o d   p ( m o d p ) a\pm b \equiv a \bmod p\pm b \bmod p \pmod p a±bamodp±bmodp(modp)
证明:
设 a = k a p + a ′ b = k b p + b ′ ∴ a   m o d   p = a ′ , b   m o d   p = b ′ , a ± b = ( k a ± k b ) p + a ′ ± b ′ ∴ a ± b ≡ a ′ ± b ′ ( m o d p ) ∴ a ± b ≡ a   m o d   p ± b   m o d   p ( m o d p ) 设a=k_ap+a' \\ b=k_bp+b' \\ \therefore a \bmod p=a',b \bmod p=b', \\ a\pm b=(k_a\pm k_b)p+a'\pm b' \\ \therefore a\pm b \equiv a'\pm b' \pmod p \\ \therefore a\pm b\equiv a \bmod p \pm b\bmod p \pmod p a=kap+ab=kbp+bamodp=a,bmodp=b,a±b=(ka±kb)p+a±ba±ba±b(modp)a±bamodp±bmodp(modp)

1.3. 乘法

a b ≡ ( a   m o d   p ) ( b   m o d   p ) ( m o d p ) ab \equiv (a\bmod p)(b\bmod p) \pmod p ab(amodp)(bmodp)(modp)
证明:
设 a = k a p + a ′ b = k b p + b ′ ∴ a   m o d   p = a ′ , b   m o d   p = b ′ , a b = ( k a p + a ′ ) ( k b p + b ′ ) = k a k b p 2 + k a b ′ p + k b a ′ p + a ′ b ′ ∴ a b ≡ a ′ b ′ ( m o d p ) ∴ a b ≡ ( a   m o d   p ) ( b   m o d   p ) ( m o d p ) 设a=k_ap+a' \\ b=k_bp+b' \\ \therefore a \bmod p=a',b \bmod p=b', \\ ab=(k_ap+a')(k_bp+b')=k_ak_bp^2+k_ab'p+k_ba'p+a'b' \\ \therefore ab \equiv a'b' \pmod p \\ \therefore ab \equiv (a\bmod p)(b\bmod p) \pmod p a=kap+ab=kbp+bamodp=a,bmodp=b,ab=(kap+a)(kbp+b)=kakbp2+kabp+kbap+ababab(modp)ab(amodp)(bmodp)(modp)

2. 费马小定理

若 p 为素数且 g c d ( a , p ) = 1 则 a p − 1 ≡ 1 ( m o d p ) 若p为素数且\mathrm{gcd}(a,p)=1 \\ 则a^{p-1}\equiv 1 \pmod p p为素数且gcd(a,p)=1ap11(modp)
证明:
设 f ( i ) = i , g ( i ) = i a , ( i ∈ [ 1 , p − 1 ] ∩ Z ) ∴ { y ∣ y = f ( i )   m o d   p } = [ 1 , p − 1 ] ∩ Z 设 1 ≤ j < k ≤ p − 1 ∵ g c d ( a , p ) = 1 , k − j < p − 1 ∴ ( k − j ) a ≠ k p ∴ g ( k ) − g ( j ) ≠ k p ∴ g ( k ) ≢ g ( j ) ( m o d p ) ∵ g ( i )   m o d   p ∈ [ 1 , p − 1 ] ∩ Z ∴ { y ∣ y = g ( i )   m o d   p } = [ 1 , p − 1 ] ∩ Z ∴ ∏ f ( i ) ≡ ∏ g ( i ) ( m o d p ) ∴ ( p − 1 ) ! ≡ ( p − 1 ) ! a p − 1 ( m o d p ) ∴ ( p − 1 ) ! ( a p − 1 − 1 ) = k p ∵ p 是质数 ∴ ( p − 1 ) !   m o d   p ≠ 0 ∴ a p − 1 − 1 = k p ∴ a p − 1 − 1 ≡ 0 ( m o d p ) ∴ a p − 1 ≡ 1 ( m o d p ) 设f(i)=i,g(i)=ia,(i\in[1,p-1]\cap Z) \\ \therefore\{y|y=f(i)\bmod p\}=[1,p-1]\cap Z \\ 设1\le j<k\le p-1 \\ \because \mathrm{gcd}(a,p)=1,k-j<p-1 \\ \therefore (k-j)a\neq kp \\ \therefore g(k)-g(j)\neq kp \\ \therefore g(k)\not\equiv g(j) \pmod p \\ \because g(i)\bmod p \in[1,p-1]\cap Z \\ \therefore \{y|y=g(i)\bmod p\}=[1,p-1]\cap Z \\ \therefore \prod f(i) \equiv \prod g(i) \pmod p \\ \therefore (p-1)!\equiv (p-1)!a^{p-1} \pmod p \\ \therefore (p-1)!(a^{p-1}-1)=kp \\ \because p是质数 \\ \therefore (p-1)! \bmod p\neq 0 \\ \therefore a^{p-1}-1=kp \\ \therefore a^{p-1}-1 \equiv 0 \pmod p \\ \therefore a^{p-1}\equiv 1 \pmod p f(i)=i,g(i)=ia,(i[1,p1]Z){yy=f(i)modp}=[1,p1]Z1j<kp1gcd(a,p)=1,kj<p1(kj)a=kpg(k)g(j)=kpg(k)g(j)(modp)g(i)modp[1,p1]Z{yy=g(i)modp}=[1,p1]Zf(i)g(i)(modp)(p1)!(p1)!ap1(modp)(p1)!(ap11)=kpp是质数(p1)!modp=0ap11=kpap110(modp)ap11(modp)

3. 逆元(除法取模)

若 p 为素数 a b ≡ a b p − 2 ( m o d p ) 若p为素数\\ \frac{a}{b}\equiv ab^{p-2} \pmod p p为素数baabp2(modp)
证明
∵ b p − 1 ≡ 1 ( m o d p ) ∴ b ⋅ b p − 2 ≡ 1 ( m o d p ) ∴ a b b ⋅ b p − 2 ≡ a b ( m o d p ) ∴ a b p − 2 ≡ a b ( m o d p ) \because b^{p-1}\equiv 1 \pmod p \\ \therefore b\cdot b^{p-2}\equiv 1 \pmod p \\ \therefore \frac{a}{b}b\cdot b^{p-2}\equiv \frac{a}{b}\pmod p \\ \therefore ab^{p-2}\equiv \frac{a}{b} \pmod p bp11(modp)bbp21(modp)babbp2ba(modp)abp2ba(modp)

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值