机器学习(一):基于Logistic回归模型的分类预测(算法实践)——阿里云天池


前言

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。

一、逻辑回归的介绍和应用

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而言,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高

1.1 逻辑回归的应用

  1. 逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。
  2. 逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

二、逻辑回归案例

Demo实践:

  • Step1:库函数导入
  • Step2:模型训练
  • Step3:模型参数查看
  • Step4:数据和模型可视化
  • Step5:模型预测

2.1.引入库

代码如下:

## 基础函数库
import numpy as np

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

2.2读入数据

代码如下:

## 构造数据集
x_fearures = np.array([[-1,-2], [-2,-1], [-3,-2], [1,3], [2,1], [3,2]])
y_label = np.array([0, 0, 0, 1, 1, 1])

2.3.调用函数拟合数据

代码如下:

## 调用逻辑回归模型
lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)

## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')
plt.show()

模型参数如图:
在这里插入图片描述

在这里插入图片描述

2.4.设置边界

代码如下:

## 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')

nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(),y_grid.ravel()])
z_proba = z_proba[:,1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

2.5.预测数据

代码如下:

###可视化预测新样本
plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1],s=50,cmap='viridis')
plt.annotate(s='New point 1',xy=(0, -1),xytext=(-2, 0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2

x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1],s=50,cmap='viridis')
plt.annotate(s='New point 2',xy=(1, 2),xytext=(-1.5, 2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

2.6.预测数据值

代码如下:

## 在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)

print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)

## 由于逻辑回归模型是概率预测模型
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

在这里插入图片描述


总结

逻辑回归的优点:

  1. 可解释性非常好。从特征的权重可以看到不同的特征对最后结果的影响。
  2. 模型效果不错。如果特征工程做的好,效果不会太差。
  3. 实现简单,计算量非常小,训练速度较快,存储资源低(计算量仅仅只和特征的数目相关)。
  4. 通过调整阈值,可以调整输出结果。

逻辑回归的缺点:

  1. 容易欠拟合。因为形式简单,而现实中的数据非常复杂,因此,很难达到很高的准确性。
  2. 很难处理数据不平衡的问题。如:对于一个正负样本非常不平衡的问题,正负样本比 10000:1,把所有样本都预测为正也能使损失函数的值比较小。
  3. 无法自动的进行特征筛选。
  4. 只能处理二分类问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值