谈谈医疗行业数据治理的四个关键阶段【后附医院数据治理案例】

数据是推动医疗行业的改进,驾驭不断变化的医疗行业环境的必要资源。它使医疗行业组织能够评估医疗的提供和支持方式、患者参与和教育的方式,以及支付者和提供者如何共同努力提高价值。但是医疗行业数据很复杂,而且很难利用。通过良好的数据治理实践,基于原则的数据处理方法可以弥合差距。数据治理使组织能够最大化其数据的价值以改善结果。
一 医疗数据治理定义
医疗行业数据治理是将数据作为战略资产进行管理的学科。它为数据通过人员、流程和技术的编排支持组织优先事项铺平了道路。通过专注于增强决策,数据治理可帮助组织领导者改善临床、运营和财务结果。重要的是,数据治理是一项持续的、企业范围内的跨职能工作,旨在优化数据以造福患者、员工和社会。
数据治理不能作为其自身的目的——为治理而治理。如果以一次性事件的“一劳永逸”的心态来处理,它将失败。并且不能局限于组织层次结构中的 IT 部门。
1医疗行业的挑战和数据治理
组织迫切需要数据治理来应对当今的挑战。通过确保人们能够在正确的时间以正确的格式访问正确的数据和信息以做出临床和业务决策,数据治理显示了组织对数据进行投资的价值。然而,组织经常面临:
·无法响应新的分析用例和需求。
·数据质量差或未知;数据孤立、不准确、不一致、不规范等。
·决策周期冗长且不准确。
·试图回答同一问题的不同来源的分析结果不一致。
·缺乏解决数据质量问题的责任或流程。
这些问题中的每一个都对组织及其患者产生负面影响。通过更好的数据治理,组织可以克服财务风险、运营效率低下和安全问题,从而为包括患者在内的整个系统带来价值。
2 医疗行业当务之急和数据治理
最终,数据治理将实现更多转型。通过良好的治理实践最大化数据的价值,组织将能够查看和使用影响患者健康的所有因素,例如将社会经济和可穿戴数据纳入医院数据生态系统。
向基于价值的临床的转变推动了对可靠数据的需求,这些数据可以衡量整个医疗过程中的成本、利润和生产力。它还需要领导者有能力评估预期的投资回报,以改善特定的医疗结果。做得好,数据治理是转型的促进剂。它使组织能够实现医疗改革所需的整合广度和速度,由临床和技术创新提供支持,这对于提高患者和社区的护理成本和质量至关重要。
二 医疗数据治理的四个阶段
强大的数据治理由四个阶段构成,所有阶段都可以改进从董事会到一线的决策。
数据治理阶段一:提升
有效数据治理的第一阶段是通过制定与组织优先事项相一致的愿景和议程来提升治理的重要性。目标是将数据的感知从昂贵的技术转变为宝贵的资源。
与任何协作努力一样,最好从对目标的共同理解开始,并为工作定义一个有限的、可实现的和具有战略目标的范围。使用增量方法,因此组织可以首先处理最重要的事情,此步骤通过定义预期结果并展示它们与组织战略方向核心的临床和业务活动的关系来促进高管的认同。
数据治理阶段二:建立
建立一个组织结构来完成数据治理任务有助于建立

<think>好的,用户需要中国电信大数据开发岗位的面试题和准备资料。首先,我需要整理常见的面试题目,特别是大数据相关的技术问题。根据提供的引用内容,Hadoop、HDFS、HBase这些是重点,比如NameNode、DataNode的作用,HBase的读写流程等。另外,用户提到的引用5详细描述了HDFS的架构,可以引用这部分内容来解释相关问题。 接下来要考虑大数据开发中的具体技术,比如MapReduce、Spark、数据存储和处理流程。用户提供的引用3提到了Hadoop面试题,包括SecondaryNameNode、DataNode、TaskTracker等组件,这些可以作为问题的一部分。同时,用户可能还需要了解数据处理工具和框架,比如Hive、Kafka、Flink等,这些都是大数据开发中的常用技术。 然后是关于项目经验和实际应用的问题。引用1提到大数据医疗、金融等领域的应用,用户可能需要准备如何将技术应用到实际场景中的例子。此外,系统设计题也是常见的,比如设计实时数据管道或数据仓库,这需要结合Hadoop生态系统组件来回答。 在准备资料方面,官方文档、书籍如《Hadoop权威指南》是基础。刷题平台和模拟面试可以帮助巩固知识。用户还需要注意电信行业的特定应用,比如用户行为分析或日志处理,可能需要结合电信的业务场景来准备案例。 最后,面试技巧部分,沟通表达和问题分析能力同样重要。用户需要练习清晰表达技术概念,并在遇到难题时展示解决问题的思路。引用4提到的格局视野问题,如对人工智能行业的认识,可能也会在面试中出现,需准备相关趋势和应用场景的回答。 需要确保所有技术术语使用正确的LaTeX格式,比如HDFS组件用$NameNode$,数学公式用$...$。同时,根据用户提供的引用,正确标注来源,例如在HDFS架构部分引用[^5]。整理过程中还要检查是否有遗漏的技术点,比如数据优化方法或集群调优,确保覆盖全面。</think>### 中国电信大数据开发岗位面试题及准备资料 #### 一、技术类面试题整理 1. **Hadoop生态相关** - 解释HDFS的架构,$NameNode$和$DataNode$的作用是什么?[^5] - 简述MapReduce的工作流程,并说明Shuffle阶段的作用。 - HBase的读写流程是怎样的?为什么适用于电信领域的海量数据存储?[^3] - 如何优化Hive查询性能?(如分区、分桶、索引等) 2. **数据存储处理** - 对比HDFS对象存储(如S3)的优缺点。 - Kafka如何保证高吞吐量和数据一致性? - 描述Spark RDD的容错机制,并说明MapReduce的区别。 3. **实时计算工具** - Flink的窗口机制有哪些类型?如何应用于实时流量监控场景? - 使用HBase时,RowKey设计需要注意哪些原则? 4. **编程算法** - 手写SQL:统计用户通话时长Top 10(表结构:`user_id, call_time, duration`)。 - 实现快速排序算法(需注意时间复杂度和稳定性)。 --- #### 二、系统设计类问题 1. **场景题** - 设计一个电信用户行为分析系统,需支持实时统计和离线报表。 **关键点**:数据采集(Flume/Kafka)、实时计算(Flink)、存储(HBase+Hive)、可视化(Superset)。 - 如何构建一个高可用的Hadoop集群?说明$NameNode$ HA的实现方式[^5]。 2. **数据治理** - 若发现Hive表数据倾斜,如何定位和解决? - 描述数据仓库分层设计(ODS、DWD、DWS、ADS)及其在电信业务中的应用。 --- #### 三、行业应用类问题 1. **电信业务场景** - 如何利用大数据技术优化基站信号覆盖问题?(如基于用户位置数据分析) - 举例说明大数据在电信反欺诈中的应用[^1]。 2. **技术趋势** - 谈谈你对“数据湖”和“数据仓库”融合的看法。 - 电信行业的数据隐私保护有哪些特殊要求?(参考GDPR和国内法规) --- #### 四、准备资料推荐 1. **官方文档书籍** - 《Hadoop权威指南》(重点:HDFS、MapReduce、YARN) - 《HBase原理实践》(读写流程、RowKey设计)[^3] - Apache Flink官方文档(实时计算核心概念) 2. **刷题实战** - LeetCode数据库/算法题(中等难度,如窗口函数、JOIN优化) - 牛客网/HackerRank大数据专项题库 - 模拟项目:从GitHub克隆电信日志分析项目(如基于Spark的CDR分析) 3. **面试技巧** - 重点准备项目中的技术选型理由和问题解决案例。 - 针对电信行业,熟悉用户画像、流量监控等业务术语。 --- #### 五、注意事项 1. **技术深度**:确保对Hadoop生态组件(如YARN、ZooKeeper)的原理有清晰理解。 2. **业务结合**:回答时需关联电信场景,例如:“在用户漫游分析中,HBase的稀疏存储特性可有效节省成本”。 3. **代码规范**:手写代码时注意边界条件和注释,如快速排序需处理重复元素[^示例代码]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马晓东国云数据CEO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值