C语言经典算法之KMP算法

本文详细介绍了KMP算法的C语言实现,包括计算next数组和匹配过程。探讨了算法的时间复杂度(O(m+n))和空间复杂度(O(m)),以及其优点(如线性时间复杂、无回溯和空间效率)和缺点(预处理成本和复杂实现)。着重展示了KMP算法在实际应用中的广泛用途,如文本搜索、编译器词法分析、网络安全等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

A.建议

B.简介

一 代码实现

二 时空复杂度

A.时间复杂度:

B.空间复杂度:

三 优缺点

A.优点:

B.缺点:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

tips:文中的(如果有)对数,则均以2为底数

B.简介

在C语言中实现KMP算法(Knuth-Morris-Pratt Algorithm)涉及两个主要步骤:计算模式串的“next”数组(或称为部分匹配表),以及利用该数组进行高效的字符串匹配。

一 代码实现

下面是一个简化的C语言版本,包括求解next数组和实际的模式匹配过程。

首先,我们解释什么是next数组:

  • next[i] 表示模式串到当前字符为止,最长的相同前后缀长度。
  • 若 pattern[0...i-1] 的某个前缀与后缀相等且长度为 k,则 next[i] = k;否则 next[i] = 0。

以下是如何计算next数组的C语言代码片段:

#include <stdio.h>

void computeNext(char* pattern, int next[], int len) {
    int i = 0, j = -1;
    
    next[0] = -1; // 初始化,表示没有前缀

    while (i < len) {
        if (j == -1 || pattern[i] == pattern[j]) { // 如果j=-1 或者当前字符与相应位置的前缀字符匹配
            i++;
            j++;
            next[i] = j; // 更新next值
        } else {
            j = next[j]; // 回溯到下一个可能的匹配位置
        }
    }
}

// 然后是使用next数组进行KMP字符串匹配的核心函数
int KMP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值