C语言经典算法之Ford-Fulkerson算法

目录

前言

A.建议

B.简介

一 代码实现

二 时空复杂度

A.时间复杂度

B.空间复杂度

C.总结

三 优缺点

A.优点:

B.缺点:

C.改进版对比:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

Ford-Fulkerson算法是解决网络流问题的经典方法,用于计算在一个带容量限制的有向图(网络)中从源点到汇点的最大流量。

一 代码实现

#include <stdio.h>
#include <stdbool.h>

// 定义边的数据结构
typedef struct Edge {
    int from, to;
    int capacity, flow; // 边的容量和当前流
} Edge;

// 定义网络的数据结构
typedef struct Graph {
    int V, E; // 顶点数和边数
    Edge *edges; // 边的数组或邻接表
} Graph;

// 创建一个带有容量的新边
Edge createEdge(int from, int to, int capacity) {
    Edge e = {from, to, capacity, 0};
    return e;
}

// 初始化一个图并添加边
Graph initializeGraph(int V, Edge edges[], int E) {
    Graph g = {V, E, edges};
    return g;
}

// 找到从source到sink的增广路径,并返回路径上的剩余容量
int dfs(Graph *g, int source, int sink, bool visited[], int parent[]) {
    visited[source] = true;

    if (source == sink) 
        return INT_MAX;

    int minCapacity = INT_MAX;
    for (int i = 0; i < g->E; ++i) {
        Edge &e = g->edges[i];
        if (!visited[e.to] && e.flow < e.capacity) {
            int pathCapacity = dfs(g, e.to, sink, visited, parent);
            if (pathCapacity > 0) {
                minCapacity = min(minCapacity, pathCapacity);
            }
        }
    }

    if (minCapacity == INT_MAX)
        return 0;
    else {
        for (int i = 0; i < g->E; ++i) {
            Edge &e = g->edges[i];
            if (visited[e.from] && parent[e.from] == source && e.to != source) {
                int remainingFlow = min(minCapacity, e.capacity - e.flow);
                e.flow += remainingFlow;
                g->edges[i ^ 1].flow -= remainingFlow; // 更新反向边的流(假设每条正向边都有对应的反向边)
                if (remainingFlow == minCapacity) break;
            }
        }
        return minCapacity;
    }
}

// Ford-Fulkerson算法实现
int fordFulkerson(Graph *g, int source, int sink) {
    int maxFlow = 0;
    bool visited[g->V];
    int parent[g->V];

    while (true) {
        memset(visited, false, sizeof(visited));
        int augmentedFlow = dfs(g, source, sink, visited, parent);
        if (augmentedFlow == 0) break;
        maxFlow += augmentedFlow;
    }

    return maxFlow;
}

// 示例:使用上述函数创建、初始化图并计算最大流
int main() {
    // 假设我们已经有了边的列表及其容量
    Edge edges[] = {...}; // 这里应填充实际的边数据
    int V = ...; // 顶点数量
    int E = ...; // 边的数量

    Graph g = initializeGraph(V, edges, E);
    int maxFlow = fordFulkerson(&g, SOURCE_VERTEX, SINK_VERTEX);
    printf("The maximum flow is: %d\n", maxFlow);

    return 0;
}

注意:在上述代码中,为了简化示例,我们假设了每个边有一个与其相关的反向边,并且可以通过索引进行访问(例如,正向边为i时,反向边为i ^ 1)。在实际编程中,可能需要根据实际情况调整数据结构来存储和处理这些反向边。

此外,在实际应用中,为了提高效率,可以将深度优先搜索(DFS)替换为广度优先搜索(BFS),得到Edmonds-Karp算法,以更快地找到较短的增广路径。

二 时空复杂度

A.时间复杂度

在最坏的情况下,Ford-Fulkerson算法的时间复杂度为O(VE^2),其中V是图中顶点的数量,E是边的数量。这是因为每次执行增广路径搜索时(通常使用DFS或BFS),可能会遍历所有的边,并且在找到最大流之前可能需要进行多轮增广操作。如果每次都通过一个长度为E的路径来增加流量,那么最坏情况下,即网络中存在一条从源到汇的长链结构,需要进行V-1次增广操作,每轮增广操作中至少检查E条边。

B.空间复杂度

Ford-Fulkerson算法的空间复杂度主要取决于存储图、递归栈(对于DFS)或队列(对于BFS)以及辅助变量的需要。

  • 存储图结构:如果是邻接矩阵表示,则空间复杂度为O(V^2);如果是邻接表表示,则空间复杂度为O(VE)。
  • 递归栈/队列:DFS时需要存储递归调用栈信息,其深度在最坏情况下可达V;BFS则需要一个队列来存储待处理节点,其大小最多可达到V,因此这两种情况下的额外空间复杂度均为O(V)。
  • 辅助变量:包括用于记录已访问状态的数组、增广路径上的父节点信息等,这部分的空间需求也是O(V)。

C.总结

综合以上,空间复杂度大致为O(V + VE),具体数值取决于图的实现方式。改进版的Edmonds-Karp算法使用了BFS寻找增广路径,虽然时间复杂度同为O(VE^2),但由于每次优先选择较短的路径,实践中比原始Ford-Fulkerson算法更快地收敛到最大流解。而Dinic算法和其他更高级的算法能够进一步优化时间复杂度至接近线性水平。

三 优缺点

A.优点:

  1. 直观易懂:Ford-Fulkerson算法概念清晰,易于理解和实现。基本思想是通过不断寻找增广路径来逐步增加网络中的流值,直至无法找到新的增广路径为止。

  2. 灵活性高:该算法适用于各种类型的网络流问题,包括非二分图、多重边和环路等复杂场景。

  3. 理论基础:基于最大流最小割定理,最终求得的流值确保了它是从源到汇的最大流量,并且能够确定一个最小割集。

  4. 通用框架:可以作为许多更高效算法的基础,例如Edmonds-Karp算法通过使用BFS改进了路径搜索的速度。

B.缺点:

  1. 时间复杂度较高:在最坏情况下,Ford-Fulkerson算法的时间复杂度为O(VE^2),其中V是顶点数,E是边数。这意味着对于大规模或结构特殊的网络,算法可能需要较长的时间才能得出结果。

  2. 依赖于路径选择策略:如果每次增广路径的选择不够理想(如深度优先搜索时选取了长路径),可能会导致算法收敛速度慢。

  3. 不保证最优解顺序:即使找到了最大流,但并不能保证以最优的方式快速找到这个解,尤其是在存在冗余路径或者高度稀疏的网络中,可能导致不必要的迭代次数。

  4. 不适用实时计算:由于其潜在的较慢收敛速度,不适合对运行时间有严格要求的实时应用环境。

C.改进版对比:

  • Edmonds-Karp算法利用BFS代替DFS寻找增广路径,从而降低了平均情况下的时间复杂度。
  • Dinic算法等其他高级算法进一步优化了时间复杂度,在某些情况下能达到接近线性的时间性能。

四 现实中的应用

Ford-Fulkerson算法在现实生活中有多种应用,尤其是在解决资源分配、路径规划和优化问题方面。以下是一些典型的应用场景:

  1. 交通运输网络

    • 在公路或铁路网络中,可以将路段的通行能力视为边上的容量,车辆或货物的流动量作为流,通过Ford-Fulkerson算法确定在满足所有道路承载能力限制的情况下,如何最大化从一个城市(源)到另一个城市(汇)的运输效率。
    • 机场调度也可以用此算法来合理安排航班起飞和降落时间,以充分利用有限的跑道资源。
  2. 物流配送与供应链管理

    • 物流中心间的货物调配过程中,可以根据不同线路的运载能力和需求,使用最大流模型找到最佳的物资运输方案,确保在仓库库存和运输成本之间取得平衡。
  3. 通信网络流量控制

    • 在互联网路由、电信网络或其他数据传输系统中,可以通过计算带宽资源的最大利用方式,实现流量在网络节点之间的最优分配,避免网络拥塞。
  4. 项目管理与任务分配

    • 在多任务并行处理的场景下,例如工程项目的分包或者人力资源分配,可以根据团队成员的能力(即每条“边”的容量)和各个任务的需求(即需要的“流”),寻找最有效的任务分配策略。
  5. 能源输送系统

    • 在电力网络中,Ford-Fulkerson算法可以帮助确定在输电线路的容量限制条件下,如何从发电站向各个地区电网输送尽可能多的电力。
  6. 水资源管理和灌溉系统

    • 管道网络中的水资源分配问题,包括从水库向农田或城市的供水过程,可以通过该算法优化水资源的流动路径和流量分布。

  • 19
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值