Ford-Fulkerson算法描述:
最大流问题可以看做是无向图搜索,找到一条可以使结果增加的边。不过只有当有流量出去,对应的向回推的流才有容量,二者相加等于该边总容量。不断搜索直到没有可以增加的边,则返回最大值。Ford-Fulkerson算法的复杂度为O(FE)。
添加对应边
struct Stream{//保存终点,流量,反向边编号
int to,cap,revNum;
};
vector<Stream>G[Max_Node];
void Add_Stream(int from,int to,int cap){
G[from].push_back((Stream){to,cap,G[to].size()});
G[to].push_back((Stream){from,0,G[from].size()-1});//由于from刚刚插入了一个,所以为size()-1
}
查找一条增广路
每一次查找后,正向路的容量为c-f,反向路径的流量为f。
bool used[Max_Node];
int dfs(int v,int t,int f){//当前点,终点(不变),当前流量
// printf("%d %d %d\n",v,t,f);
if(v==t)return f;
used[v]=true;
for(int i=0;i<G[v].size();i++){
Stream &temp=G[v][i];
if(!used[temp.to]&&temp.cap>0){
int d=dfs(temp.to,t,min(f,temp.cap));
if(d>0){
temp.cap-=d;
G[temp.to][temp.revNum].cap+=d;
return d;
}
}
}
return 0;
}
找出最大流
死循环不断调用深度优先搜索,直到没有增广路为止。
int max_flow(int s,int t){
int flow=0;
for(;;){
memset(used,0,sizeof(used));
int f=dfs(s,t,INF);
if(f==0)return flow;
flow+=f;
}
}
测试代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
#define INF 99999999
#define Max_Node 1000
using namespace std;
struct Stream{//保存终点,流量,反向边编号
int to,cap,revNum;
};
vector<Stream>G[Max_Node];
bool used[Max_Node];
void Add_Stream(int from,int to,int cap){
G[from].push_back((Stream){to,cap,G[to].size()});
G[to].push_back((Stream){from,0,G[from].size()-1});//由于from刚刚插入了一个,所以为size()-1
}
int dfs(int v,int t,int f){//当前点,终点(不变),当前流量
// printf("%d %d %d\n",v,t,f);
if(v==t)return f;
used[v]=true;
for(int i=0;i<G[v].size();i++){
Stream &temp=G[v][i];
if(!used[temp.to]&&temp.cap>0){
int d=dfs(temp.to,t,min(f,temp.cap));
if(d>0){
temp.cap-=d;
G[temp.to][temp.revNum].cap+=d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t){
int flow=0;
for(;;){
memset(used,0,sizeof(used));
int f=dfs(s,t,INF);
if(f==0)return flow;
flow+=f;
}
}
int main(){
int s=0,t=4;
Add_Stream(s,1,10);
Add_Stream(s,2,2);
Add_Stream(1,2,6);
Add_Stream(1,3,6);
Add_Stream(3,2,3);
Add_Stream(3,t,8);
Add_Stream(2,t,5);
printf("%d\n",max_flow(s,t));
return 0;
}
Dinic算法描述
Dinic算法通过宽度优先搜索产生分层图,然后在上面进行深度优先搜索寻找最短増广路径。如果找不到了,则说明最短增广路变长或不存在增广路了,于是继续重新构造分层图,由于每一次循环后最短增广路长度至少增加1,所以最多重复O(V)步,我们通过iter数组避免对没有用的边进行多次检查,将复杂度降为O(EV),总复杂度为O(EV^2)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<vector>
#include<queue>
#include<algorithm>
#define INF 99999999
#define Max_Node 1000
using namespace std;
struct Stream{//保存终点,流量,反向边编号
int to,cap,revNum;
};
vector<Stream>G[Max_Node];
int level[Max_Node];//顶点到源点的距离标号
int iter[Max_Node];//当前弧,在其之前的边就没有用了
void Add_Stream(int from,int to,int cap){
G[from].push_back((Stream){to,cap,G[to].size()});
G[to].push_back((Stream){from,0,G[from].size()-1});//由于from刚刚插入了一个,所以为size()-1
}
void bfs(int s){
memset(level,-1,sizeof(level));
queue<int> que;
level[s]=0;
que.push(s);
while(!que.empty()){
int v=que.front();que.pop();
for(int i=0;i<G[v].size();i++){
Stream &e=G[v][i];
if(e.cap>0&&level[e.to]<0){
level[e.to]=level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f){//当前点,终点(不变),当前流量
printf("%d %d %d\n",v,t,f);
if(v==t)return f;
for(int &i=iter[v];i<G[v].size();i++){
Stream &temp=G[v][i];
if(temp.cap>0&&level[v]<level[temp.to]){
int d=dfs(temp.to,t,min(f,temp.cap));
if(d>0){
temp.cap-=d;
G[temp.to][temp.revNum].cap+=d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t){
int flow=0;
for(;;){
bfs(s);
if(level[t]<0)return flow;
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>0)flow+=f;
}
}
int main(){
int s=0,t=4;
Add_Stream(s,1,10);
Add_Stream(s,2,2);
Add_Stream(1,2,6);
Add_Stream(1,3,6);
Add_Stream(3,2,3);
Add_Stream(3,t,8);
Add_Stream(2,t,5);
printf("%d\n",max_flow(s,t));
return 0;
}