C语言经典算法之Bagging(Bootstrap Aggregating)算法(伪代码)

目录

前言

A.建议:

B.简介:

一 代码实现

二 时空复杂度

A.时间复杂度

B.空间复杂度

C.总结

三 优缺点

A.优点:

B.缺点:

四 现实中的应用


前言

A.建议:

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介:

Bagging(Bootstrap Aggregating)算法是一种集成学习方法,它通过训练多个基模型并汇总其预测结果来提高机器学习模型的稳定性和准确率。在C语言中实现一个完整的Bagging算法会涉及数据抽样、模型训练、预测以及结果整合等多个步骤。

一 代码实现

由于C语言不是专门用于机器学习的高级编程语言,且通常不直接提供现成的机器学习库,下面仅给出一种概念性的伪代码描述,并非实际可执行的C语言代码。

数据抽样

对原始数据集进行有放回的随机抽样(Bootstrap Sampling),生成多个与原始数据集大小相同的子集。

// 假设dataset是一个包含样本数据的结构体数组,num_samples是原始样本数,num_bags是要生成的子集数量
for (int bag = 0; bag < num_bags; ++bag) {
    // 创建一个新的子数据集
    Sample[] bootstrap_dataset = createBootstrapSample(dataset, num_samples);
    
    // 使用这个子数据集训练一个基模型
    Model base_model = trainModel(bootstrap_dataset);
    
    // 将训练好的基模型添加到集合中
    addBaseModelToEnsemble(base_model);
}

模型训练

对每个子数据集训练一个独立的基学习器,可以是决策树、逻辑回归或其他任何基础分类或回归模型。

预测阶段

对于新的测试样本,使用每个基模型进行预测。

for (int model_index = 0; model_index < num_bags; ++model_index) {
    BaseModel model = getBaseModelFromEnsemble(model_index);
    Prediction result = predict(model, test_sample);
    storePrediction(result); // 存储每个模型的预测结果
}

结果整合

  • 对于分类问题,多数投票(Majority Voting)或者平均概率(Soft Voting)可以用来聚合各个基模型的预测结果。
  • 对于回归问题,可以通过平均每个基模型的预测值来得到最终结果。
if (isClassificationTask) {
    ClassificationResult ensemble_result = majorityVote(stored_predictions);
} else if (isRegressionTask) {
    RegressionResult ensemble_result = averagePredictions(stored_predictions);
}

printFinalResult(ensemble_result);

在实际应用中,你需要根据具体的学习任务设计数据结构和函数来处理数据抽样、模型训练及预测等过程。如果要在C语言中从零开始实现这样的系统,可能需要大量手动编码,并自行实现各种机器学习模型的训练和预测逻辑。而在现代机器学习实践中,更常见的是利用Python中的Scikit-learn等成熟库来快速实现Bagging算法,这些库提供了丰富的接口和预定义模型,极大地简化了开发流程。

二 时空复杂度

Bagging算法(Bootstrap Aggregating)的时空复杂度取决于它所结合的基础学习器的类型以及构建集成模型时的具体参数。以下是关于Bagging算法时空复杂度的一般性讨论:

A.时间复杂度

  • 训练阶段

    • Bagging算法需要对原始数据集进行B次有放回抽样,每次抽样生成一个与原始数据集大小相同的子集(在实际情况中,通常每个子集的大小是n,且通过重采样得到,所以每个子模型的训练时间复杂度大致等于单个基础模型在样本量为n上的训练时间复杂度)。
    • 假设单个基础模型的训练时间为 O(T_base),那么对于B个子模型,总体训练时间复杂度将是 O(B * T_base)
  • 预测阶段

    • 对于分类任务,集成模型通常采用投票策略(多数表决或加权表决),这意味着需要对测试样本用B个子模型分别做出预测,每个子模型预测的时间复杂度为 O(T_pred),因此总预测时间复杂度为 O(B * T_pred)
    • 对于回归任务,可能需要计算所有子模型的预测结果然后取平均,时间复杂度同样是 O(B * T_pred)

B.空间复杂度

  • 存储训练模型

    • 存储B个独立训练出的基础模型需要的空间大约是 O(B * S_base),其中 S_base 是单个基础模型所需存储空间。
  • 预测过程

    • 在做预测时,如果不需要同时存储所有子模型的预测结果,则空间复杂度主要取决于执行预测操作所需的临时空间,这一般远小于存储整个集成模型所需的内存。

C.总结

总结来说,Bagging算法的时间复杂度随着基学习器的数量增加而线性增长,而空间复杂度同样受到基学习器数量的影响。由于Bagging利用了并行和/或随机化的优势,在实际应用中可以通过并行计算来显著减少训练时间,特别是在大规模数据集上。然而,需要注意的是,即使Bagging可以有效降低过拟合并提高泛化能力,但其成本在于增加了训练和预测的资源消耗。

三 优缺点

Bagging(Bootstrap Aggregating)算法是一种集成学习方法,它通过训练多个基学习器并对它们的预测结果进行集成来提高模型的性能和稳定性。以下是Bagging算法的主要优点和缺点:

A.优点:

  1. 降低过拟合:由于每个基学习器是基于原始数据集的不同随机子集(通过有放回抽样产生)训练得到的,这降低了任何单个模型对训练数据过度拟合的风险。

  2. 方差减小:Bagging通过集成多个独立训练的模型来减少模型输出的方差,从而提高了模型的泛化能力。

  3. 模型稳定性增强:即使个别基础模型对噪声或异常样本敏感,集成模型的整体表现通常更为稳定,因为“坏”的模型可能被其他模型的正确预测所平衡。

  4. 并行化处理:每个基学习器可以独立地在不同的计算资源上并行训练,大大加快了训练速度,尤其适用于大规模数据集和现代多核/分布式计算环境。

  5. 提供特征重要性估计:对于像随机森林这样的Bagging变体,可以通过统计特征在所有决策树中的使用频率来评估各个特征的重要性。

  6. 鲁棒性:Bagging能够处理各种类型的数据,包括高维数据,并且不需要预先进行特征选择或数据预处理(如归一化)。

B.缺点:

  1. 增加计算成本:相较于单一模型,Bagging需要训练多个模型,因此在计算资源有限的情况下,其训练时间和空间复杂度都会显著增加。

  2. 依赖于基学习器:Bagging算法的最终效果很大程度上取决于基学习器的选择。如果基学习器本身容易过拟合或欠拟合,那么Bagging可能无法完全解决这个问题。

  3. 不改善偏差问题:Bagging主要针对的是降低模型的方差,对于具有较大偏差(欠拟合)的基础模型,Bagging不能显著改善模型的偏倚问题,而Boosting等其他集成方法在处理偏差上有更好的效果。

  4. 解释性:相比于单一模型,Bagging生成的集成模型往往更难理解和解释,尤其是当集成的模型数量非常多时。

  5. 性能瓶颈:在某些特定场景下,若基学习器之间的相关性较高,则Bagging算法的提升效果可能会受限。为了获得最佳性能,基学习器应尽可能独立和多样化。

四 现实中的应用

Bagging算法在现实中的应用非常广泛,尤其在机器学习和数据分析领域。以下是一些具体的应用实例:

  1. 随机森林(Random Forests):Bagging的一个著名应用是构建随机森林模型,这是决策树的集成版本。在随机森林中,每个决策树都是基于样本数据的不同随机子集(通过Bootstrap抽样得到)以及特征子集(随机选取一部分特征)训练而成,最后通过投票或平均等方法汇总所有决策树的预测结果。

    • 在分类问题上,随机森林常用于金融风险评估、医学诊断、生物信息学(如基因功能预测)、文本分类等领域。

    • 在回归问题上,随机森林可以用来做房价预测、销量预测、气候模型预测等。

  2. 时间序列预测:Bagging也被应用于时间序列分析,比如通过对不同子序列进行建模来提高预测准确性,减少单个模型对噪声的敏感性。

  3. 异常检测:在工业故障诊断、网络安全等领域,利用Bagging技术结合各种检测器可以更稳定地识别出异常行为或事件。

  4. 图像识别与计算机视觉:Bagging可用于图像分类任务中,通过集成多个弱分类器提高整体识别准确率。

  5. 自然语言处理:在NLP任务中,Bagging可以帮助改进词性标注、情感分析、主题建模等任务的效果。

  6. 金融市场预测:Bagging集成模型可以有效降低市场波动带来的预测不确定性,在股票市场趋势预测、信用评级、风险管理等方面发挥作用。

  • 36
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值