C语言经典算法之Z-Algorithm(Z-Score算法)

本文介绍了Z-Algorithm的基本原理、代码实现、时间复杂度与空间复杂度分析,讨论了其优点(如高效、原地操作等)和缺点(如不支持实时修改),以及在现实中的广泛应用,如字符串匹配、文本压缩等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

A.建议

B.简介

一 代码实现

二 时空复杂度

A.时间复杂度(Time Complexity)

B.空间复杂度(Space Complexity)

C.总结

三 优缺点

A.Z-Algorithm的优点:

B.Z-Algorithm的缺点:

C.总结:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

Z-Algorithm(也称Z-Score算法)是一种在线性时间内计算给定字符串的所有后缀与其自身最长公共前缀长度的高效算法。

一 代码实现

算法原理: Z-Algorithm的主要思想是在遍历输入字符串的同时,维护一个长度为n的数组Z,其中Z[i]表示字符串从索引i开始的后缀与原字符串的最长公共前缀长度。算法通过利用已经计算过的子问题结果来避免重复工作,从而达到线性时间复杂度。

// 定义Z数组
int Z[n];

// 初始化边界条件
Z[0] = n; // 当前字符的单个字符作为其自己的最长公共前缀
if (n > 1 && S[0] == S[1]) {
    Z[1] = 2;
} else {
    Z[1] = 0;
}

// L 和 R 分别代表当前活跃的Z-box的左边界和右边界
int L = 0, R = 0;

// 遍历字符串,计算每个位置的Z值
for (int i = 2; i < n; ++i) {
    if (i <= R) { // 利用已知的Z值加速计算
        Z[i] = min(R - i + 1, Z[i - L]);
    }
    while (i + Z[i] < n && S[Z[i]] == S[i + Z[i]]) { // 扩展Z[i]
        Z[i]++;
    }
    if (i + Z[i] - 1 > R) { // 更新活跃的Z-box边界
        L = i;
        R = i + Z[i] - 1;
    }
}

以上代码给出了Z-Algorithm的基本框架,下面是一个更完整的C语言实现示例:

#include <stdio.h>
#include <string.h>

void computeZArray(char *S, int Z[], int n) {
    Z[0] = n;
    if (n > 1) {
        Z[1] = (S[0] == S[1]) ? 2 : 0;
    }

### TODA Algorithm Implementation in C Language The TODA (Transposition of Optimal Decisions under Approximation) algorithm primarily focuses on decision-making processes within game theory or artificial intelligence contexts. While the provided references do not directly mention the TODA algorithm, they touch upon related concepts like complexity analysis and convolution-based methods that could be indirectly relevant[^1]. Below is an explanation regarding how one might approach implementing a TODA-like structure using C. #### General Structure for Implementing TODA in C To implement the TODA algorithm effectively in C, consider breaking down its components into manageable functions: 1. **Data Representation**: Use arrays or structures to represent states and transitions between them. 2. **Optimization Logic**: Incorporate logic for approximating optimal decisions based on quantal opponents' behavior as described by Milec et al.. 3. **Convolution Operations**: If convolutions are necessary (as hinted at in reference [2]), utilize libraries such as FFTW for efficient computation[^2]. Below is an example code snippet demonstrating these principles: ```c #include <stdio.h> #include <stdlib.h> // Function prototypes void initialize_toda_state(double *state, int size); double evaluate_decision(const double *state, const double *opponent_model, int size); int main() { int state_size = 10; // Example state size // Allocate memory for state representation double *current_state = malloc(state_size * sizeof(double)); if (!current_state) { perror("Failed to allocate memory"); return EXIT_FAILURE; } // Initialize TDA state with some values initialize_toda_state(current_state, state_size); // Simulate opponent model data double opponent_model[state_size]; for (int i = 0; i < state_size; ++i) { opponent_model[i] = rand() / (RAND_MAX + 1.0); // Randomized opponent preferences } // Evaluate current decision quality double evaluation_score = evaluate_decision(current_state, opponent_model, state_size); printf("Evaluation Score: %.4f\n", evaluation_score); free(current_state); return EXIT_SUCCESS; } // Initializes the TODA state array with default values void initialize_toda_state(double *state, int size) { for (int i = 0; i < size; ++i) { state[i] = 0.5; // Neutral initialization value } } // Evaluates the effectiveness of a given decision against an opponent's modeled response double evaluate_decision(const double *state, const double *opponent_model, int size) { double score = 0.0; for (int i = 0; i < size; ++i) { score += state[i] * opponent_model[i]; // Simple dot product approximation } return score; } ``` This basic framework initializes a state vector representing possible configurations during gameplay and evaluates potential moves through interaction with an estimated opponent strategy. Note this does not fully replicate all aspects of TODA but serves as a starting point. #### Key Considerations When Extending This Code - Ensure proper handling of edge cases when dealing with large datasets or complex models. - Utilize advanced mathematical techniques where applicable—referencing external tools may enhance performance significantly. - Validate results rigorously since inaccuracies can propagate quickly due to compounding errors inherent in numerical computations.
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值